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1
Introduction

The ability to understand natural language plays a central role in hu-
mans’ conception of intelligent machines. Alan Turing already in his
now famous Imitation Game (Turing, 1950) gives natural language
understanding a key role in tricking humans into thinking that they
are interacting with their fellow specimen rather than a machine. One
of the goals of Natural Language Processing (NLP) is to develop algo-
rithms and build systems to help machines understand what humans
are talking about; to understand the meaning of natural language
utterances.

In the first part of the thesis I explore computational techniques
to learn the meaning of words and sentences considering the visual
world as a naturally occurring meaning representation. Furthermore,
I consider images as a means to bridge between languages and present
methods seeking to find relationships between images and natural
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utterances in multiple languages.
The Chapters of the thesis follow a progression starting with a

single language at the word-level and arriving to multilingual visually
grounded sentence representations:

Chapter 1 introduces the topic and contributions of the thesis.

Chapter 2 discusses the related work and technical background in
detail.

Chapter 3 presents a cognitive model of language learning that
learns visually grounded word representations.

Chapter 4 focuses on visually grounded sentence representations
and their interpretations from a linguistic perspective using the
architecture that is the basis for the chapters to follow: com-
bination of a Convolutional Neural Network to extract visual
features and a Recurrent Neural Network to learn sentence em-
beddings.

Chapter 5 applies visually grounded representation learning approach
that forms the basis of Chapter 4 to improve machine transla-
tion in the domain of visually descriptive language.

Chapter 6 shows the clear benefits of learning visually grounded
representations for multiple languages jointly.

Chapter 7 extends the investigations of Chapter 6 to the cross-
domain setup, removing the assumption that for each language
the same images are annotated with different languages.
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1.1 Learning representations
The foundational methodology applied in all chapters is statistical
learning. The early days of NLP were characterized by rule-based sys-
tems building on such foundations as Chomskyan theories of grammar
(Chomsky, 1957) or Montague Semantics (Montague, 1970). Since
the 1980s partly due to such theories falling out of fashion, but also
due to the increase in the amount of available computational power
Machine Learning (ML) approaches revolutionized the field. Learn-
ing in general proved to be a crucial component to Artificial Intel-
ligence and also specifically in NLP. Machine Learning algorithms
are designed with the goal that given an increasing number of exam-
ples a system improves its performance according to some measure
of success. Reflecting the structure of ML itself and the popularity
of ML within the field, NLP research follows a task-oriented method-
ology: researchers borrow or collect data sets, define measures of
success and develop or apply learning algorithms. Chapters 5, 6 and
7 closely follow this blueprint.

From the rule based times of “engineering grammars” researchers
moved onto “engineering features” to represent the textual data as
input to general-purpose pattern recognition algorithms such as deci-
sion trees, support-vector machines or conditional random fields. A
large set of these feature templates are still based on various formal-
linguistic theories requiring various linguistic taggers and parsers to
assign structure to raw texts. Intuitively, different applications such
as machine translation or goal-oriented dialogue systems require dif-
ferent input representations. Furthermore, one would assume that
various languages require different feature-extraction pipelines reflect-
ing the typological differences across languages.
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Linguistic representation learning challenges this intuition and is
interested in discovering general principles that allows machines to
learn linguistic representations from raw data, which are more or less
generally applicable. This line of work, as well as the approaches pre-
sented in the thesis, fit in the general representation learning frame-
work consisting of machine learning approaches that learn useful rep-
resentations for various tasks from (close to) raw input.

The expression “representation learning” is somewhat synony-
mous with “deep learning” at the time of writing this thesis (Ben-
gio et al., 2013). When mentioning representation learning in the
deep learning context it is usually meant that the goal is to learn
a function from raw input to target labels. In the context of this
thesis, however, the emphasis is on learning representations of words,
phrases and sentences that are potentially generally useful, meaning
that they can be used as input to many tasks. This is sometimes re-
ferred to as transfer learning (Pratt, 1993) where we seek to identify
unsupervised learning objectives, supervised tasks, self-supervision
schemes or the combinations of these to learn representations that
perform well on a large variety of problems.

1.2 Learning representations of words
Most attempts to build general representations for words are based
on the distributional hypothesis of word meaning. It states that the
degree to which words are similar is a function of the similarity of
the linguistic context they appear in. In other words, similar words
appear in similar contexts. Computational models of distributional
semantics implement this intuition and generate real-valued word vec-
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tors based on co-occurrence statistics in large text corpora. To aid
the reader with technical and historical context we introduce distri-
butional semantics models using the count-based/prediction-based dis-
tinction borrowed from Baroni et al. (2014b). Section 2.1.1 introduces
earlier count-based methods building word-context co-occurrence vector-
space, while Section 2.1.2 presents the prediction-based framework in
a more detailed fashion as the techniques discussed here are closely
related to the approaches presented in this thesis. Section 2.1.2.2 de-
tails efficient linear models for predictive word-learning for two main
reasons: 1.) linear word-learning methods had a tremendous impact
on shaping the current landscape of continuous linguistic represen-
tation learning and are still widely used at the time of writing this
thesis, 2.) our main point of comparison for our word learning model
in Chapter 3 is one of such models detailed in the section.

Word-representations within the prediction-based framework are
an instance of representation learning: word representations – usu-
ally referred to as word embeddings – are learned through optimizing
model parameters to predict context from words or words from con-
text. Such learned word-representations have proven successful in
many applications especially in recent years, however, they are not
realistic in a certain sense. While they capture many aspects of syn-
tax and semantics of natural language they are not connected to the
real world outside of the large collections of texts. This leads us
to the main topic of the thesis: visual grounding introduced in the
following section.

5



1.3 Visually grounded word representa-
tions

Many theories of human cognition supported by empirical evidence
state that human language and concept representation and acquisi-
tion is grounded in perceptual and sensori-motor experiences. Cross-
situational word learning, an influential cognitive account of human
word learning, supposes that humans learn the meanings of words
exploiting repeated exposure to linguistic contexts paired with per-
ceptual reality. Learning representations for linguistic units in a vi-
sually grounded manner brings computational language learning sys-
tems closer to human-like learning. Such theoretical considerations
are detailed in Section 2.2.1.

Let us also consider the practical applicability of distributional
language representations in the larger scope of Artificial Intelligence.
One of the dreams of AI is to develop technology to power intelligent
embodied agents taking the form of office assistants or emergency
aid robots. These machines cannot implement natural language as
an arbitrary symbol manipulation system akin to a calculator’s un-
derstanding of magnitudes or slopes. Similarly to humans they need
to link linguistic knowledge to the extra-linguistic world.

Furthermore, while certain aspects of meaning such as encyclo-
pedic knowledge are abudant textual data, perceptual information
can provide complementary valuable insights into physical properties
rarely mentioned in texts such as size, shape and color. In practice
harnessing the visual modality to learn language representations that
link linguistic knowledge to the external world has been empirically
shown to improve performance on several semantic tasks as detailed
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in Section 2.2.2.
In terms of computational modeling the jump from distributional

to grounded models is conceptually simple: one needs to collect data
where the contexts of linguistic units are extra-linguistic and represent
these contexts such that they can be provided as input to representa-
tion learning algorithms. More concretely in terms of extra-linguistic
context the present thesis focuses on the visual modality.

Linguistic-visual multi-modal representations on the word level
have a well established albeit somewhat brief history (Section 2.2.2).
Methods were developed both within the count-based and prediction-
based frameworks using computer vision techniques to represent the
visual modality and NLP methods to represent texts. These separate
spaces are then combined into a single multi-modal representation.

As the first contribution of the thesis in Chapter 3 we present
an incremental cross-situational model of word learning introducing
modern computer-vision techniques to computational cross-situational
modeling of human language learning. Through our experiments we
show that our presented model is competitive with state-of-the-art
prediction-based distributional models and that our model can name
relevant concepts given images.

1.4 Visually grounded sentence represen-
tations

When moving from atomic words to the compositional world of sen-
tences we need flexible models that can represent word-order and hi-
erarchical relationships. In Chapters 4, 5, 6 and 7 we use Recurrent
Neural Networks, which form a powerful class of sequence models to
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represent sentences. Section 2.3 provides the reader with historical
and technical background to the considerations behind this choice.

The study of general sentence representation learning has a much
briefer history than word-representations and Section 2.4 situates the
reader in the area. Most approaches to learn useful sentence repre-
sentations to date are based also on the distributional hypothesis
and formulate general purpose representation learning as a sort of
linguistic context prediction, but on the sentence level.

Section 2.5 describes the general framework of learning visually-
grounded sentence representations and their utility. The basic idea
is still context prediction, however, we learn associations between
sentences and their visual context i.e. model parameters are optimized
such that related image sentence pairs get pushed close together and
unrelated pairs far from each other in a learned joint space.

As the second contribution of this thesis in Chapter 4 we train
such an architecture and explore the learned representations. Our
main interest and contribution here is the development of general
techniques to interpret linguistic representations learned by Recur-
rent Neural Networks and use these techniques to contrast text-only
language models with their grounded counterparts trained on the
same sentences.

1.5 Visual modality bridging between lan-
guages

One of the intriguing aspects of using the visual modality as a natu-
rally occurring meaning representation is that it is also naturally uni-
versal across languages. The visual modality anchors linguistic rep-
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resentations to perceptual reality, but also provides a natural bridge
between various languages. Linguistic utterances that are similar to
each other, intuitively, appear in the context of perceptually similar
scenes across languages.

Utterances in multiple languages and corresponding perceptual
stimuli can be conceptualized as multiple views of the same underlying
abstract object. Learning to map these multiple views to the same
feature space can lead to better representations as they have to be
more general due to the model having to solve multiple tasks at the
same time. This multi-view learning perspective is explained in more
detail in Section 2.6.1 focusing on the specific case of multi-modal
and multi-lingual representations we explore in Chapter 6 and 7.

The visual modality as pivot on the word-level can be used to find
possible translations for words when no dictionary is available. Ex-
tending this idea from word to sentence level gives rise to techniques
that use the visual modality as a pivot to translate full sentences.
Approaches in this direction are discussed in Section 2.6.2.

The third contribution in the thesis combines visually grounded
sentence representation learning with machine translation. More
specifically in Chapter 5 we present a multi-task learning architec-
ture that jointly learns to associate English sentences with images
and to translate from English to German. We show that visually
grounded learning improves translation quality in our domain and
that it provides orthogonal improvements to having a large additional
English-German parallel corpus.

The fourth contribution of this thesis is exploring visually
grounded sentence representations learned for multiple languages jointly.
In Chapter 6 we show that better grounded representations can be
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learned by training on multiple languages. We find a consistent pat-
tern of improvement whereby multilingual visually grounded sentence
representations outperform bilingual ones, which outperform mono-
lingual representations. Furthermore, we provide empirical evidence
that the quality of visually grounded sentence embeddings on lower-
resource languages can be improved by jointly training together with
data sets from higher-resource languages.

Lastly, our fifth contribution in Chapter 7 is exploring the ben-
efit of multilinguality in visually grounded representation learning as
in Chapter 6, but in the cross-domain setting. Here we consider a
disjoint scenario where the image-sentence data sets for different lan-
guages do not share images. We assess how the method applied in
Chapter 6 performs under domain-shift. Furthermore, we introduce
a technique we call pseudopairs, whereby we generate new image–
caption data sets by creating pairs across data sets using the sen-
tence similarities under the learned representations. We find that
even though this technique does not require any additional external
data source, models or other pipeline elements, it consistently im-
proves image sentence ranking performance.

1.6 Published work

1.6.1 Chapters
Each of the following Chapters has been previously published. They
are included with the only modification of re-aligning and re-sizing a
few figures.
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At the time of completing the thesis Chapter 7 has been submitted
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1.6.2 Publications completed during the PhD
These publications were completed during my PhD work, but have
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2
Background

2.1 Distributed word-representations
The distributional approach to word meaning hypothesizes that se-
mantically related words tend to appear in similar contexts. This
idea goes back in linguistics tradition to the earlier days of American
structuralism (Nevin & Johnson, 2002). As early as in 1954 in his
seminal paper ”Distributional structure” Harris claims that distribu-
tion should be taken as an explanation for word meaning and that
similarity classes can be constructed based on co-occurrence statis-
tics (Harris, 1954). Cruse & Cruse (1986) write that ”It is assumed
that the semantic properties of a lexical item are fully reflected in
the appropriate aspects of the relations it contracts with actual and
potential contexts” and that ”the meaning of a word is constituted
by its contextual relations”. Computational models of distributional
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semantics implement this intuition and generate real-valued word
vectors based on co-occurrence statistics in large text corpora. Here
we present such representations using the count-based and prediction-
based distinction borrowed from Baroni et al. (2014b).

2.1.1 Count-based approaches
Early computational linguistics models of distributional semantics
fall in the category of count-based approaches: they store the number
of times target words appear in different contexts. In the resulting co-
occurrence matrix each row corresponds to a word and each column
to a context. Each cell in the matrix is the number of times a word
appears in a particular context. The size of the co-occurrence matrix
is then vocabulary size by the number of contexts.

Contexts are typically words appearing within a certain window
size or text documents. To the counts in the co-occurrence matrix
various re-weighting schemes are applied followed by matrix factor-
ization, resulting in a lower dimensional dense representation.

The earliest approaches include Hyperspace Analogue to Lan-
guage (Lund & Burgess, 1996), which constructs a term-term co-
occurrence matrix and Latent Semantic Analysis (Dumais, 2004),
which applies the tf-idf re-weighting scheme on a term-document
matrix followed by singular value decomposition. More recent ap-
proaches apply different re-weighting schemes such as point-wise mu-
tual information (Bullinaria & Levy, 2007) and local mutual informa-
tion (Evert, 2005) or different matrix factorization algorithms such as
non-negative matrix factorization (Baroni et al., 2014b). For a com-
prehensive set of empirical experiments on count-based approaches
consult Bullinaria & Levy (2007) and Bullinaria & Levy (2012).
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2.1.2 Prediction-based approaches
In more recent years various deep learning methods have been ap-
plied to learn distributed word representations usually referred to as
word embeddings in the literature. Contrary to count-based methods
prediction-based approaches fit into the standard machine learning
pipeline: they optimize a set of parameters to maximize the prob-
ability of words given contexts or contexts given words, where the
word-embeddings themselves form a subset of the parameters of the
full model.

2.1.2.1 Neural language models

Laying down the framework for recent developments the first modern
approach to learn distributed word-representations from realistic data
was the neural language model introduced by Bengio et al. (2003).
They present a feed-forward multilayer perceptron with continuous
word-embeddings, a single hidden layer and a softmax output layer.
More precisely the model is parametrized by a 1.) word-embedding
matrix, whose rows correspond to word-vectors and columns to a
learned feature, 2.) hidden and output weight-matrices. The network
takes as input the concatenation of n word-vectors preceding the
target word as context representation and outputs the probability
distribution over the current word. The model is trained to maximize
the probability of the target word given the previous fixed number of
words as context over a training corpus – n-gram language model –
trained with stochastic gradient descent (Cauchy, 1847) through the
backpropagation algorithm (Rumelhart et al., 1985). Shortly after
its publication the neural probabilistic feed-forward neural language
model of Bengio et al. (2003) was shown to improve performance in
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speech recognition (Schwenk & Gauvain, 2005).
Following a similar recipe, the convolutional architecture of Col-

lobert & Weston (2008) based on the time-delay neural network
model (Waibel et al., 1990) took several steps towards the by now
standard practices in deep NLP. Contrary to the feed-forward net-
work the convolution over-time structure can handle sequences of
variable length. This is essential for NLP applications where typically
sentences are composed of a varying number of words. Collobert &
Weston (2008) introduce the idea of jointly learning many linguis-
tic tasks at the same time such as part-of-speech tagging, chunking,
named entity recognition and semantic role labeling through multi-
task learning (Caruana, 1997). Their architecture was later refined in
Collobert et al. (2011) and the pre-trained full model was made avail-
able alongside the standalone word-embeddings. Finally, Collobert
& Weston (2008) were the first to show the utility of pre-trained
word-embeddings in other tasks through transfer learning.

In this thesis we make extensive use of the multi-task learning
strategy: In Chapters 4 we apply it to language modeling and image-
sentence ranking, in Chapter 5 for machine translation and image-
sentence ranking, while in Chapters 6 and 7 for image-sentence and
sentence-sentence ranking in multiple languages.

The arguably most popular architecture in NLP, however, which
we also use in Chapters 4, 5, 6 and 7 is the recurrent neural net-
work (RNN). It was first introduced by the late Jeffrey L. Elman in
his seminal paper “Finding Structure in Time” as a model of human
language learning and processing (Elman, 1990). Recurrent neural
networks take a variable length sequence as input and at every time-
step they compute their next state based on the previous state and
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the current input. Recurrent networks essentially “read” the input
left-to-right and keeps track of the context when encoutering a new
input. Equation 2.1 provides the recursive definition of the computa-
tion in a RNN language model:

P (wt|w<t) = softmax(Uht + bo) (2.1)
ht = tanh(Whht−1 +Wiwt + bh) (2.2)

In case of language modeling at each time-step t the network takes
an input word vector wt and its previous hidden state ht−1 main-
tained through previous time-steps. These are used to compute the
current state ht and to predict the probability distribution over the
following word P (wt|w<t). It is parametrized by a word-embedding
matrix W ∈ R|V |×d, an input-to-hidden weight matrix Wi, a hidden-
to-hidden weight matrix Wh and finally the hidden-to-output weight
matrix U to predict the unnormalized probabilities over the vocabu-
lary entries and additional hidden and output bias terms bo and bh.
This model is trained to maximize the probability of the training se-
quences, with the backpropagation through time algorithm (BPTT)
(Robinson & Fallside, 1987; Werbos, 1988; Williams & Zipser, 1995).

Elman (1991) shows when trained on simple natural language-like
input hidden states of the network ht encode grammatical relations
and hierarchical constituent structure. In Chapter 4 we also train a
recurrent language model and compare it to its grounded counterpart
on real-world data and explore similar questions about the learned
opaque representations as Elman (1991).

Despite the early successes, however, it turned out to be diffi-
cult to train Elman networks on practical applications with longer
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sequences due to the vanishing and exploding gradient phenomena
(Bengio et al., 1994). The RNNLM implementation of Mikolov et al.
(2010), however, established a new state-of-the-art on language mod-
eling and RNNs regained their popularity in language processing. At
the time of writing this thesis RNNs remain a widely used in language
processing and are still trained with BPTT with various versions of
stochastic gradient decent and smart initialization strategies.

While more complex training algorithms such as hessian-free op-
timizers (Martens & Sutskever, 2011) remain out of fashion, an over-
whelming amount of empirical evidence shows that the more complex
long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997;
Gers et al., 1999) and gated recurrent unit networks (GRU) (Cho
et al., 2014b) recurrent network variants vastly outperform the sim-
ple Elman network in practice. We opted for GRUs in Chapters 4, 5,
6 and 7.

2.1.2.2 Efficient linear models

Despite the success of deep learning architectures in NLP it wasn’t
until the introduction of the much simpler and fast continuous bag-
of-words and skip-gram with negative sampling (SGNS) algorithms
Mikolov et al. (2013a) packaged into the easy-to-use word2vec toolkit
that word-embeddings became ubiquitous in computational linguis-
tics and NLP research. These algorithms rely on simple log-linear
models as opposed to the more expensive neural networks leading to
faster training on larger corpora. The more successful SGNS model
has two learnable word embedding matrices one for the target words
and a separate one for the contexts. The model is trained to max-
imize the dot product between true word-context pairs appearing
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in corpus and minimize the dot product between randomly sampled
contrastive examples.

Similarly to the negative sampling algorithm of Mikolov et al.
(2013a) the ranking objectives implemented in Chapters 5, 6 and 7
force the models to push images and corresponding sentences close
and contrastive examples far from each other in the learned multi-
modal space.

The GloVe approach (Pennington et al., 2014) is another popular
simple linear model with word and context embeddings, which repre-
sents a hybrid between count- and prediction-based techniques: it op-
timizes word-embeddings to predict the re-weighted log co-occurrence
counts collected from large text corpora.

There has been work on finding relationships between count- and
prediction-based methods (Levy & Goldberg, 2014) and using in-
sights from both to develop novel improved variants (Levy et al.,
2015).

2.2 Visually grounded representations of
words

2.2.1 Language and perception
The discussion of learning distributed representations so far has fo-
cused on implementations of the distributional hypothesis and ex-
tracting information exclusively from text corpora. To human lan-
guage learners, however, a plethora of perceptual information is avail-
able to aid the learning process and to enrich their mental representa-
tions. The link between human word and concept representation and
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acquisition and the perceptual-motor systems has been well estab-
lished through behavioral neuroscientific experiments (Pulvermüller,
2005). The earliest words children learn tend to be names of con-
crete perceptual phenomena such as objects, colors and simple ac-
tions (Bornstein et al., 2004). Furthermore, children generalize to
the names of novel objects based on perceptual cues such as shape
or color (Landau et al., 1998). In general, the embodiment-based
theories of concept representation and acquisition in the cognitive
scientific literature put forward the view that a wide variety of cog-
nitive processes are grounded in perception and action (Meteyard
& Vigliocco, 2008). The precise role of sensori-motor information in
language acquisition and representation, however, is a highly debated
topic (Meteyard et al., 2012).

Motivated by such cognitive theories and experimental data, var-
ious computational cognitive models of child language acquisition
investigate the issue of learning word meanings from small scale or
synthetic multi-modal data. The model presented by Yu (2005) uses
visual information to learn the meanings of object names whereas the
architecture of Roy (2002) learns to associate word sequences with
simple shapes in a synthetically generated data setting.

Interestingly even the articles introducing Latent Semantic Anal-
ysis (Landauer & Dumais, 1997) and Hyperspace Analogue to Lan-
guage (Lund & Burgess, 1996) mention that a possible limitation of
the presented distributional semantic models is the lack of grounding
in extra-linguistic reality. Landauer & Dumais (1997) puts it as ”But
still, to be more than an abstract system like mathematics words must
touch reality at least occasionally.” The lack of relationship between
symbols and the external reality is usually referred to as the ground-
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ing problem in the literature (Harnad, 1990; Perfetti, 1998). On the
defense of purely textual models Louwerse (2011) argues that the
corpora used to train distributional semantic models are generated
by humans and as such reflect the perceptual world. For a counter
argument consider the few pieces of text that would state obvious
perceptual facts such as “bananas are yellow” or how often objects
with the property “yellow” would appear in similar textual contexts
(Bruni et al., 2014).

In practice much work on multi-modal distributional semantics
have found that text-only spaces tend to represent more encyclope-
dic knowledge, whereas multi-modal representations capture more
concrete aspects (Andrews et al., 2009; Baroni & Lenci, 2008). In
Chapter 3, where we develop a cross-situational cognitive model of
word-learning, we also find that the word-representations learned by
our model correlate better with human similarity judgements on more
concrete than abstract words. In contrast, word-embeddings learned
by the SGNS algorithm trained on the same sentences perform better
on more abstract words.

One does not necessarily need to reach a conclusion on whether
grounded or distributional models are superior; combining their mer-
its in a pragmatic way is an attractive alternative (Riordan & Jones,
2011).

2.2.2 Combined distributional and visual spaces
When learning multimodal word representations we wish to construct
a matrix, where each row corresponds to a word and each feature
column represents a distributional feature, a perceptual feature or a
mixture of the two.
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The first approach to learn visual word representations from re-
alistic data sets trains a multi-modal topic model trained on a BBC
News data set containing text articles with image illustrations (Feng
& Lapata, 2010). Documents are represented as bag-of-words vectors
(BoW), while the image illustrations are represented as bag-of-visual-
words (BoVW) (Csurka et al., 2004) using a difference-of-Gaussians
segmentation and SIFT local region descriptor pipeline (Lowe, 1999).
The textual an visual features are concatenated and a Latent Dirich-
let Allocation (Blei et al., 2003) topic model is trained on joint repre-
sentations. After convergence each word is represented by a vector,
where each component corresponds to the conditional probability of
that word given a particular multi-modal topic. Feng & Lapata (2010)
shows that their multi-modal model outperforms the text-only repre-
sentations by a large margin on word association and word similarity
experiments.

Bruni et al. (2012) construct multi-modal representations set of
words for which both distributional and image features are available
using images labeled with tags by annotators. For each tag-word a
visual-only representation is created by summing over the BoVW fea-
tures for all images corresponding to the tag. Bruni et al. (2012) con-
struct several types of distributional semantic spaces from text-only
corpora unrelated to the images. As in Feng & Lapata (2010) they
create multimodal representations by applying separate pipelines to
extract textual and visual features spaces and then concatenating
them. On word-similarity benchmarks Bruni et al. (2012) show that
the text-only model performs better than visual-only and that the
combination of the two surpasses both. They also find that distribu-
tional semantics models perform poorly on finding the typical colors
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of concrete nouns, whereas the visual and multi-modal models per-
form perfectly. In these experiments distributional semantics models
fail to capture the obvious fact that “the grass is green” providing evi-
dence against the theoretical argument that perceptual information is
available in large collections of texts and so grounded representations
are superfluous (Louwerse, 2011).

Combining BoVW and count-based distributional representations
remained the standard methodology in many other works on multi-
modal word representations at the time (Bruni et al., 2011; Leong &
Mihalcea, 2011a,b). Bruni et al. (2014) frame multi-modal distribu-
tional semantics under a general framework: create separate textual
and visual features for words followed by re-weighting and matrix
factorization. For example Kiela & Bottou (2014) improves over
previous results by running the SGNS algorithm for distributional
features and applying a pre-trained convolutional neural networks
(CNN) to extract image features. They show that CNN features
outperform BoVW image descriptors on word similarity experiments
with the multi-modal word representations. Similarly to Kiela &
Bottou (2014) we also apply CNNs as image feature extractors in all
chapters.

Convolutional neural networks learn a hierarchy of blocks of im-
age filters followed by pre-defined pooling operations optimized for a
particular task. It has been observed in the computer vision commu-
nity that the lower layers of deep CNNs trained across various data
sets and tasks tend to learn filter maps that resemble Gabor filters
(Gabor, 1946) and color blobs. Intuitively these low-level features ap-
pear to be general and as such afford transfer. There is an extensive
body of work on exploring the transferability of CNN features to var-
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ious computer vision tasks through fine-tuning (Donahue et al., 2014;
Oquab et al., 2014) or simply taking the last layer representation of
CNNs as high-level features as inputs to linear classifiers (Girshick
et al., 2014; Sharif Razavian et al., 2014). Given their success in
transfer learning in computer vision it is natural to apply CNNs in
the visually grounded language learning community as black-box im-
age feature extractors.

All approaches described so far require both textual and visual in-
formation for the same concepts and representations for these modali-
ties are learned separately and are fused later. The multi-modal skip-
gram (Lazaridou et al., 2015) model was developed to alleviate such
limitation: it is a multi-task extension of the skip-gram algorithm
predicting both the context of words, but also the visual representa-
tions of concrete nouns. This architecture was later proposed as a
model of child language learning and was applied to the CHILDES
corpus (MacWhinney, 2014) with modifications to model referential
uncertainty and social cues Lazaridou et al. (2016) present in lan-
guage learning. Later it was compared to human performance in
terms of learning the meaning of novel words from minimal exposure
(Lazaridou et al., 2017).

Chapter 3 presents a computational cognitive model of word learn-
ing using only visual information developed at the same time as the
multi-modal skip-gram approach. Similarly to Feng & Lapata (2010)
we assume pairs of text and images. However, in our dataset im-
ages represent everyday scenes and are paired with descriptive sen-
tences to mimic the language environment of children on a high level.
Our model is inspired by the cross-situational account of language
learning and assumes that the representations of words are learned
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exclusively through the co-occurrences between visual features and
words. Rather than building a matrix of image-features per word
and then summarizing as in Kiela & Bottou (2014), we apply an
online expectation-maximization-based algorithm (Dempster et al.,
1977) to align words with image features mimicking child language
learning. In essence, our approach combines the cross-situational in-
cremental word-learning model of Fazly et al. (2010b) with the larger
realistic data sets, modern convolutional image representations and
extends it to operate on real-valued scene representations. The re-
sult of the learning process is a word embedding matrix, where each
row corresponds to a word, each column to a CNN feature and each
entry to the strength of the relationship between the word and an
image-feature.

We show through word-similarity experiments that, while our ap-
proach performs on par with the SGNS trained on the same text data,
there is a qualitative difference between the learned embeddings: the
correlation between our visual word-embeddings and human similar-
ity judgements is significantly higher for concrete than abstract nouns.
As each word embedding is represented in the image-feature space as
in Kiela & Bottou (2014), we show that our model can label images
with related nouns through simple nearest-neighbor search.

2.3 From words to sentences
Applying the distributional intuition to model the meaning of sen-
tences is not as straightforward as it is for words. In a sentence-
embedding matrix each row would correspond to a possible sentence
and each column to a feature. Intuitively however, the number of
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words in a corpus is much lower than the number of sentences: one
can assume a large, but finite set of existing words and an infinite set
of potential sentences to compose from them. Words can be thought
of as atomic units and in downstream applications one can use a
lookup operation on a word embedding matrix to represent units in
the input. However, it is infeasible to look up full sentences. In fact,
from a method that represents sentences in a continuous space one
would expect to also represent and generalize to unseen sentences at
test time. Furthermore, given two sentences John loves Mary and
Mary loves John we wish our sentence encoding function ϕ to repre-
sent the meaningful difference stemming from the underlying syntac-
tic structure ϕ(John loves Mary) ̸= ϕ(Mary loves John). As such we
seek to learn a sentence encoder that is sensitive to syntactic struc-
ture and semantic compositionality i.e.: the notion that the meaning
of an expression is a function of its parts and the rules combining
them (Montague, 1970).1

The compositional distributional semantics framework produces
continuous representations for phrases up to sentences using addi-
tive and multiplicative interactions of count-based distributed word-
representations (Mitchell & Lapata, 2008) or combine symbolic and
continuous representations with tensor-products (Clark & Pulman,
2007). The latter line of work culminated in a number of unified
theories of distributional semantics and formal type logical and cat-
egorical grammars (Coecke et al., 2010; Clarke, 2012; Baroni et al.,
2014a). These approaches assume that words are represented by dis-
tributional word embeddings and define compositional operators on

1Similarly one could argue that morphemes are atomic units from which words
are composed. In fact, sub-word representations form an important field of re-
search (Bojanowski et al., 2017).
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top of them motivated by particular formal semantic considerations.
From the point of view of theoretical linguistics arguably one of the
most intriguing aspects of such theories of meaning is that they pro-
vide an elegant data-driven solution to deal with the representation
of the lexical entries of content words – nouns, verbs and adjectives.
Within applied NLP, however, this line of work has not resulted in
practical machine learning approaches to solve natural language tasks
on real world data sets. This is likely due to the different scope and
the computationally expensive high-order tensor operations involved
(Bowman, 2016).

Lastly, before going forward with the more recent neural mod-
els in the next section, it is only fair to mention that bag-of-words
based representations bypassing the issue of compositionality form
a set of very strong baselines for a number of sentence-level tasks
(Hill et al., 2016). These simple baselines include using multinomial
naive Bayes uni- and bigram log-count features within support vec-
tor machines (Wang & Manning, 2012) or feeding the average of the
word-embeddings in a sentence into a softmax classifier (Joulin et al.,
2017).

2.4 Neural sentence representations
In Section 2.1 we have discussed the feed-forward (Bengio et al., 2003)
and recurrent network (Mikolov et al., 2010) language models from
the perspective of learning word-representations. However, both ar-
chitectures learn embeddings of not only single words, but also learn
to represent sequences of multiple words such as sentences. An in-
triguing property of such approaches is that they represent various
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linguistic objects in the same space as activations of the neural mod-
els.2 When learning transferable sentence representations there are
two main considerations we will discuss: 1.) which architecture to
choose and 2.) what objective to optimize. Various neural network ar-
chitectures have been proposed that handle variable-sized data struc-
tures useful for language processing: recurrent networks take the in-
put sequentially one word or character at a time, convolutional neural
networks (Blunsom et al., 2014; Zhang et al., 2015; Conneau et al.,
2016; Chen & Zitnick, 2014) process sequences in fixed-sized n-gram
patterns up to a large window, recursive neural networks (Goller
& Kuchler, 1996; Socher et al., 2011; Tai et al., 2015) take a tree
data structure as input such as a sentence according to the traver-
sal of a constituency and graph neural networks operate on graphs
(Marcheggiani & Titov, 2017) such as syntactic/semantic dependency
or abstract meaning representations. All the aforementioned architec-
tures take word-embeddings as input and compute fixed vectors for
sentences. These representations are tuned to a specific task such as
sequence tagging, sentence classification, machine translation, pars-
ing or language modeling.

In Chapters 4, 5, 6 and 7 we decided to apply recurrent neural
networks as sentence encoders. Recursive neural networks provide a
principled approach to compute representations along the nodes of
constituency or dependency parse trees (Socher et al., 2013, 2014; Le
& Zuidema, 2015; Tai et al., 2015). In practice, however, these archi-
tectures require parse trees as input, which makes them impractical
for our mission of learning visually grounded representations for mul-

2This property is not unique to neural models e.g. the pregroup-algebra-
ased compositional distributional semantics framework of Coecke et al. (2010)
sentences of any grammatical structure live in the same inner-product space.
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tiple languages. For each language considered, the training procedure
requires finding a good pipeline from text pre-processing to parsing
to generate the input representations for the networks. Furthermore,
tree structures by nature do not afford straightforward batched com-
putation directly and tend to run dramatically slower than recurrent
or convolutional models. In terms of performance the jury is still out,
however, so far only modest improvements have been observed over
recurrent models on specific tasks in specific settings (Li et al., 2015;
Tai et al., 2015). For graph structured neural networks the same
argument holds. Two equally practical alternatives to RNNs that op-
erate on raw sequences are convolutional neural networks (Bai et al.,
2018) and transformers (Vaswani et al., 2017) and both could replace
the RNNs in Chapters 5, 6 and 7.

As mentioned earlier contrary to word-embeddings the represen-
tations and the composition function these models learn are task-
specific and not universal. For learning transferable and general dis-
tributed sentence representations the first notable approach is the
skip-thought vectors model (Kiros et al., 2015). It extends distribu-
tional semantics intuition to the sentence level: they train a sentence
encoder on contiguous sentence sequences – such as books – which
learns sentence representations predictive of the sentences around it.
More specifically they train a recurrent encoder to encode a target
sentence and use two separate recurrent decoders to generate its pre-
context and post-context. This method was confirmed to be a suc-
cessful self-supervised method for transfer learning in a number of
sentence classification tasks beating simpler methods such as bag-of-
words approaches based on skip-gram or CBOW embeddings, tf-idf
vectors and auto-encoders (Hill et al., 2016). A convolutional vari-

31



ant of the encoder was introduced in Gan et al. (2017) and several
other works train simple sum/average pre-trained word-embedding
encoders using the same sentential context prediction objective (Ken-
ter et al., 2016; Hill et al., 2016). The larger context of paragraphs is
explored in Jernite et al. (2017) where the task is to predict discourse
coherence labels in a self-supervised fashion.

Some later approaches have moved away from distributional cues
and identifyied supervised tasks that lead to representations that
transfer well to a wide variety of other tasks. The task of Natural
Language Inference (Bowman et al., 2015; Williams et al., 2018) as an
objective was identified to learn good sentence embeddings (Conneau
et al., 2017; Kiros & Chan, 2018) and Subramanian et al. (2018) com-
bine a number of other supervised tasks with self-supervised training
through multi-task learning.

The state-of-the-art in learning universal sentence representations
at the time of writing is represented by neural language models with
a large number of parameters trained over huge corpora (Peters et al.,
2018; Devlin et al., 2018). These approaches go back to exploiting
only distributional cues and train a stack of convolutional and/or
recurrent and/or transfomer layers on large-scale language model-
ing. When transferring the networks to novel tasks they are either
fine-tuned, a separate smaller network is trained on top of their rep-
resentations or they are used as fixed feature extractors (Howard &
Ruder, 2018; Peters et al., 2019).

32



2.5 Visually grounded sentence represen-
tations

Universal sentence representations are in general learned from text-
only corpora. The most successful current trend is large-scale lan-
guage modeling based on the distributional semantics intuition of
the general usefulness of linguistic context prediction. However, this
leaves the resulting sentence representations blind to the language-
external reality leading to the grounding problem as discussed in Sec-
tion 2.2. Given that visual information has been shown to contain
useful information for word-representations it is a natural question
to ask whether this observation generalizes to sentence embeddings.
The idea of context prediction coming from the distributional hypoth-
esis can be adopted to visual grounding in a conceptually straight-
forward manner: train sentence embeddings to be predictive of their
visual context.

The larger family of techniques that our visually grounded sen-
tence learning approach technically belongs to is learning to rank (Li,
2011). Some of the earlier attempts at multi-modal ranking did not
consider full sentences rather, images paired with (mostly) noun tags
such as Weston et al. (2010).

Framing the learning of multi-modal vision and language spaces
as a ranking problem from images to descriptions and conversely from
descriptions to images was put forward by Hodosh et al. (2013). They
argue that evaluating grounded learning through image–description
generation is plagued by the lack of straightforward performance mea-
sures. This issue was later discussed in Elliott & Keller (2014) who
demonstrate low to moderate correlation between automatic mea-

33



sures such as BLUE, METEOR and ROUGE with human judge-
ments.

From the image–sentence ranking perspective a joint space be-
tween language and vision reflects accurately the underlying seman-
tics if given one modality as query the other modality can be ac-
curately retrieved. This leads to a straightforward evaluation pro-
tocol adopting metrics from information retrieval literature such as
Recall@N, Precision@N, Mean Reciprocal Rank, Median Rank or
Mean Rank. From the practical point of view it also unifies image–
annotation and image–search based on language queries.

The standard benchmark data sets we used for this purpose an-
notate images found in online resources with descriptions through
crowd-sourcing. These descriptions are largely conceptual, concrete
and generic. This means that descriptions do not focus too much
on perceptual information such as colors, contrast or picture qual-
ity; they do not mention many abstract notions about images such
as mood and finally the descriptions are not specific meaning that
they do not mention the names of cities, people or brands of objects.
What they do end up mentioning are entities depicted in the images
(frisbee, dog, boy) their attributes (yellow, fluffy, young) and the rela-
tions between them. The images depict common real-life scenes such
as a bus turning left or people playing soccer in the park. As such, an-
notation collected independently from different crowd-source workers
end up focusing on different aspects of these scenes. For a comprehen-
sive overview on image-description data sets consult Bernardi et al.
(2016).

Following the ranking formulation of grounded learning by Ho-
dosh et al. (2013) the earliest works applying a combination of sen-
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tence and image encoder neural networks to image–sentence ranking
were put forward by Kiros et al. (2014) and Socher et al. (2014):
they both apply pre-trained convolutional neural networks as image
encoders and while Socher et al. (2014) use recursive neural network
variants to encode sentences Kiros et al. (2014) apply recurrent net-
works. Rather than matching whole images with full sentences the
alternative approach of learning latent alignments between image–
regions and sentence fragments have also been explored concurrently
(Karpathy et al., 2014; Karpathy & Fei-Fei, 2015).

To predict images from the sentences – and conversely sentences
from the images – the architecture we chose in Chapters 4, 5, 6 and 7
follows Kiros et al. (2014): we combine a recurrent neural network to
represent sentences and a pre-trained convolutional neural network
followed by an affine transformation we train for the task to extract
features from images. The image-context prediction from sentences
in Chapter 4 is formulated as minimizing the cosine distance between
the learned sentence and image representations in a training set of
image–caption pairs.

Later we follow the formulations of Vendrov et al. (2016) and
Faghri et al. (2018) and apply the sum-of-hinges loss in Chapter 5
and max-of-hinges ranking objective in Chapters 6 and 7. These loss
functions push relevant image–sentence pairs close, while contrastive
pairs far from each other in a joint embedding space. Given a mini-
batch of e.g. 100 samples, for each sample the contrastive pairs are
generated by taking the wrong pairings from that batch leading to
99 contrastive pairs per sample. The ranking losses are minimized in
both image → sentence and sentence → image directions.

We empirically found both ranking losses to perform better than
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minimizing the cosine distance alone and max-of-hinges to perform
consistently better in our experiments than sum-of-hinges. The use of
these various objectives across chapters reflects the evolving common
practices in the field at the time.

The representations learned by such image–sentence ranking mod-
els have been shown to improve performance when combined with
skip-thought embeddings on a large number of semantic sentence clas-
sifications tasks compared to skip-thought only (Kiela et al., 2018).
These findings were confirmed and improved upon using a self-attention
mechanism on top of the RNN encoder (Yoo et al., 2017).

To investigate the difference between the representations learned
by (text-only) language models and image–sentence ranking mod-
els in Chapter 4 we develop novel visualization and analysis meth-
ods. Furthermore, expanding on the findings of (Kiela et al., 2018)
and (Yoo et al., 2017) in Chapter 5 we show that visually grounded
learning through an image–sentence ranking objective leads to better
translations in the visually descriptive domain. We also show that
learning multi-modal representations provides gains on top of learn-
ing from larger bilingual corpora. Finally in Chapters 6 and 7 we
apply the image–sentence ranking framework (Vendrov et al., 2016;
Faghri et al., 2018) in the multi-lingual setting and demonstrate that
better visually grounded representations can be learned when train-
ing on multiple languages jointly.
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2.6 Visually grounded multilingual rep-
resentations

On top of the visual modality anchoring linguistic representations
to perceptual reality it also provides a universal meaning represen-
tation bridging between languages. The intuition being that words
or sentences with similar meanings appear within similar perceptual
contexts independently of the language. First in Section 2.6.1 we
discuss the multi-view representation learning perspective of consid-
ering images annotated with multiple descriptions in different lan-
guages as multiple views of the same underlying semantic concepts.
Our aim in Chapters 6 and 7 is to learn better visually grounded
sentence representations by learning from these multiple views simul-
taneously. Furthermore, in Chapter 5 we show that we can improve
translation performance by learning better sentence representations
through adding the visual modality as an additional view. Next we
discuss how images can be used as pivots in practice for translation
on word-level and on sentence-level in Section 2.6.2.

2.6.1 Multi-view representation learning perspec-
tive

Images and their descriptions in multiple languages can be taken as
different views of the same underlying semantic concepts. From this
multi-view perspective learning common representations of multiple
languages and perceptual stimuli can potentially exploit the comple-
mentary information between views to learn better representations.
Being able to extract a shared representation from only a single view

37



also leads to practical applications such as cross-modal and cross-
lingual retrieval or similarity calculation.

The two main multi-view learning paradigms put forward in re-
cent literature are based on autoencoders and canonical correlation
analysis (CCA) (Wang et al., 2015). Both assume multiple sets of
variables representing the same data points.

Ngiam et al. (2011) introduced the idea of multi-modal autoen-
coders to learn joint representations of audio and video. Their archi-
tecture has a shared encoder extracting features from both modalities
and two modality specific decoders. Their approach learns shared rep-
resentations such that one view can be reconstructed from another
and the activations of the shared encoder learn a multi-modal joint
space. Autoencoder approaches remain one of the standard family of
models to study the learning of visual-linguistic multi-modal spaces
(Silberer & Lapata, 2014; Silberer et al., 2017; Wang et al., 2018).

For the discussion of CCA-based approaches let us consider the
deep canonical correlation analysis (DCCA) put forward by Andrew
et al. (2013). In this approach view specific networks are applied
to extract non-linear features and the canonical correlation between
these representations is maximized. This optimization process amounts
to maximizing the correlation between the projections of the two data
views subject to the constraint that the projected dimensions are un-
correlated.

The workhorse of the image–sentence ranking experiments in the
foundational work on the topic from Hodosh et al. (2013) was in
fact the Kernel CCA method (Akaho, 2006). Other CCA based ap-
proaches were also applied to the image–sentence data sets we con-
sider in our work (Gong et al., 2014; Klein et al., 2015; Eisenschtat
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& Wolf, 2017).
A third direction that is also explored in the literature is combin-

ing the reconstruction objective of autoencoders with an additional
correlation loss, but without the whitening constraints of CCA (Chan-
dar et al., 2014, 2016).

In the multi-lingual multi-modal setting Funaki & Nakayama
(2015) apply Generalized CCA (Horst, 1961) – a variant of CCA gen-
eralized to multiple views as opposed to only two – to learn correlated
representations of images and multiple languages. The deep partial
canonical correlation analysis approach – a deep learning extension
of the partial canonical correlation (Rao, 1969) – learns multilingual
English-German sentence embeddings conditioned on the representa-
tion of the images they are aligned to (Rotman et al., 2018). They
show that their model using the visual modality as an extra view
finds better multilingual sentence and word representations as demon-
strated by cross-lingual paraphrasing and word-similarity results.

The bridge correlational neural network approach (Rajendran et al.,
2016) combines autoencoders and correlation objectives to learn com-
mon representations in a setting when the different views only need
to be aligned with one pivot view. They preform image-sentence re-
trieval experiments in French or German where the image-caption
data set is only available for English, however, there are parallel cor-
pora between German or French and English. In other words English
acts as a pivot. A similar combination of autencoder and correlational
training was applied to bridge image–captioning (Saha et al., 2016).

Our formulation of the problem does not fall in the set of ap-
proaches generally considered as multi-view learning. However, it
is similar to the CCA-based techniques in that we train two sub-
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networks – one for the linguistic and another for the image modality
– and do not rely on decoder networks to compute a reconstruction
loss as in the autoencoder approaches. Another connections is that
in Chapter 4 we minimize the cosine distance between the learned
representations which is related to the CCA objective: when the
feature matrices are not centered the CCA objective corresponds to
maximizing the cosine similarity instead of the correlation.

One of the main benefits of the learning to rank approach we opted
for is its flexibility: 1.) in Chapter 4 we train an image–sentence
ranking model in a single language, 2.) we apply the same building
blocks to train on multiple languages where the same images are
shared between languages in Chapter 6, 3.) in Chapter 7 we explore
the setup without such an alignment and finally 4.) in Chapter 5 we
improve the automatic translation performance by adding the image–
sentence ranking objective, incorporating an additional view to help
us learn better sentence representations.

In our setup additional views are incorporated in the sentence rep-
resentations by full parameter sharing through multi-task learning:
given multiple image–caption data sets at each iteration we sample
a batch from one of them and perform an update to the encoders
using the ranking loss function. Gella et al. (2017) apply the image–
sentence ranking framework in the multilingual setup considering im-
ages as pivots bridging English and German and train a multilingual
image–sentence ranking model. Their results suggest that the multi-
lingual models outperform the monolingual ones on image-sentence
ranking, however, they do not show consistent gains across languages
and model settings. In Chapter 6 we implement a similar setup to
Gella et al. (2017) and show that both English and German image-
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sentence ranking performance is reliably improved by bilingual joint
training using our setup. We expand on the results further and pro-
vide evidence that more gains can be achieved by adding more views:
on top of English and German, we add French and Czech captions and
show the monolingual model is consistently outperformed by the bilin-
gual and the latter by the multilingual. We apply the same approach
to improve the performance on the lower resource French and Czech
languages by adding the larger English and German image-caption
sets; showing successful multilingual transfer in the vision-language
domain.

2.6.2 Images as pivots for translation
On word level, images have been used to link languages and induce
bilingual lexicons without parallel corpora. The lack of bi-text in
this setting has been traditionally solved by methods relying on tex-
tual features such as ortographic similarity (Haghighi et al., 2008)
or similar diachronic distributional statistical trends between words
(Schafer & Yarowsky, 2002). However, images tagged with various la-
bels in a multitude of languages are available on the internet allowing
multimodal approahces to use images as pivots between languages.

(Bergsma & Van Durme, 2011) use Google image search to find rel-
evant images for the names of physical objects in multiple languages.
Given a source word and a list of possible translations Google is
queried to find n images per word. Word similarities between the
source word and target vocabulary are computed through the BoVW
representations of their corresponding images. The word in the target
vocabulary with the highest similarity is chosen as translation.

This method is vastly improved upon by a later approach applying
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pre-trained convolutional neural networks to represent words in the
visual space Kiela et al. (2015) .

Exploring the limitations of image-pivoting for bilingual lexicon
induction Hartmann & Søgaard (2018) present a negative result show-
ing that such techniques scale poorly to non-noun words such as
adjectives or verbs. However, combining image-pivot based bilin-
gual word-representations with more traditional multi-lingual word-
embedding techniques leads to superior performance compared to
their uni-modal counterparts (Vulić et al., 2016). Hewitt et al. (2018)
create a large-scale data set of 2̃00K words and 100 images per word
using Google Image Search and perform experiments with 32 lan-
guages. They confirm the finding of Hartmann & Søgaard (2018)
that image-pivoting is most effective for nouns, but also find that
using their larger dataset adjectives can also be translated reliably.

Images have also been used as pivots for translating full sentences.
In automatic machine translation a pivot-based approach is applied
when there are parallel corpora available between language pairs A→
C and C → B, but there is no data for A→ B. The problem is solved
by first translating A to C and then C to B. Image–pivoting refers to
a setup where we assume the existence of a dataset of images paired
with words or sentences in different languages A ↔ IA and B ↔ IB

and translation is done through the image space going through A→ I

to I → B.
Nakayama & Nishida (2017) apply image-pivoting in such a zero-

resource machine translation setting. The task is to translate from
English to German without aligned parallel corpora, however, sep-
arate image–description data sets are available in both languages.
They solve the problem by training two components: 1.) visual-
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sentence encoder that matches images and their descriptions, 2.)
image-description generator maximizing the likelihood of gold stan-
dard captions given the images. At test time the visual-sentence
encoder representation of the source sentence is fed to the image–
description generator to produce the translation. Their results were
improved later by modeling the image-pivot-ased zero-resource trans-
lation setup as a multi-agent communication game between encoder
and decoder (Chen et al., 2018; Lee et al., 2018).

2.7 Interpreting continuous representations
The linguistic representations learned through neural architectures
are notoriously opaque. Contrary to count-based methods the fea-
tures extracted by deep networks from text input appear as arbitrary
dense vectors to the human eye. In experiments with grounded learn-
ing throughout this thesis we find that visual grounding improves
translation peformance and that multilingual representations outper-
form monolingual ones in image–sentence ranking. But where do
these improvement come from? What are the linguistic regularities
represented in the recurrent states that lead to the final performance
metrics? Did the model learn to exploit trivial artifacts in the train-
ing data or did it learn to meaningfully generalize? What character-
izes the individual features recurrent networks extract from the input
sentences?

The main topic of this thesis is learning visually grounded repre-
sentations for linguistic units. For a complete picture, however, it is
crucial to assess the difference in the representations between textual
only and multimodal representations not only from a quantitative
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point of view, but also from a qualitative linguistics angle. This is
what Chapter 4 is dedicated to.

Developing techniques for interpreting machine learning models
have multiple goals. From the practical point of view as learning al-
gorithms make their way into critical applications such as medicine,
humans and machines need to be able to co-operate to avoid catas-
trophic outcomes (Caruana et al., 2015). As such there is a growing
interest in deriving methods to explain the decision of such architec-
tures.

One of the approaches is to assign a real-valued ”relevance” score
to each unit in the input signal, signifying how much impact it had
on the final prediction of the model. One of the first paradigms
in generating such relevance scores is gradient based methods: they
take the gradient of the output of the network with respect to the
input (Simonyan et al., 2014). Deep neural models of language tasks
learn distributed representations of input symbols and as such further
operations have be applied to reduce the resulting gradient vectors
to single scalars e.g.: using ℓ2 norm (Bansal et al., 2016).

Another prominent and well studied approach still based on gra-
dient information is layerwise relevance propagation (LRP) (Bach
et al., 2015). The output of the final layer is written as the sum of the
relevance-scores from the input and similarly to the back-propagation
algorithm the relevance of each neuron recursively depends on the
lower-layer all the way down to the input signal. Different versions
of LRP run the backward pass with different rules taking as input
gradient information and activation values. It was later theoretically
analyzed and generalized into the deep Taylor decomposition method
(Binder et al., 2016).
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Perturbation based methods are gradient free and are algorithmi-
cally very simple: they involve generating pseudo-samples according
to some procedure and measuring how the models’ response changes
between each pseudo-sample and the original. LIME (Ribeiro et al.,
2016) and its NLP specific LIMSSE extension (Poerner et al., 2018b)
perturbs the input creating a local neighborhood around it and fits
interpretable linear models to explain the predictions of any com-
plex black box classifier. Even simpler perturbation based techniques
measure the difference between the original input and the various
perturbed candidates such as the erasure (Li et al., 2016b) and our
omission (Kádár et al., 2017) method in Chapter 4.

Apart from practical considerations of model interpretation train-
ing complex and opaque models from close to raw input can help
us discover interesting patterns in the input data that are crucial
in solving the task. Deep neural networks learn to solve tasks from
close to raw input, similar to what humans receive. As such the reg-
ularities they learn can also shed light on the patterns humans might
extract from data to cope with certain tasks. Recent methodology
in probing the learned representations of LSTM language models, in
fact, resemble psycholinguistic studies. A number of experiments us-
ing the agreement prediction paradigm (Bock & Miller, 1991) suggest
that LSTM language models successfully learn syntactic regularities
as opposed to memorizing surface patterns (Linzen et al., 2016; En-
guehard et al., 2017; Bernardy & Lappin, 2017; Gulordava et al.,
2018).

For our purposes in Chapter 4 we develop our explanation method
to shed light on the linguistic characteristics of the input grounded
learning models learn in contrast to text-only language models.
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3
Learning word meanings from

images of natural scenes

Abstract Children early on face the challenge of learning the mean-
ing of words from noisy and ambiguous contexts. Utterances that
guide their learning are emitted in complex scenes rendering the map-
ping between visual and linguistic cues difficult. A key challenge in
computational modeling of the acquisition of word meanings is to
provide representations of scenes that contain sources of information
and statistical properties similar in complexity to natural data. We
propose a novel computational model of cross-situational word learn-
ing that takes images of natural scenes paired with their descriptions
as input and incrementally learns probabilistic associations between
words and image features. Through a set of experiments we show
that the model learns meaning representations that correlate with
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human similarity judgments, and that given an image of a scene it
produces words conceptually related to the image.
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This chapter is based on Kádár, Á., Alishahi, A., & Chrupala,
G. (2015). Learning word meanings from images of natural scenes.
Traitement Automatique des Langues. 55(3)
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3.1 Introduction
Children learn most of their vocabulary from hearing words in noisy
and ambiguous contexts, where there are often many possible map-
pings between words and concepts. They attend to the visual envi-
ronment to establish such mappings, but given that the visual con-
text is often very rich and dynamic, elaborate cognitive processes are
required for successful word learning from observation. Consider a
language learner hearing the utterance “the gull took my sandwich”
while watching a bird stealing someone’s food. For the word gull,
such information suggests potential mappings to the bird, the per-
son, the action, or any other part of the observed scene. Further
exposure to usages of this word and relying on structural cues from
the sentence structure is necessary to narrow down the range of its
possible meanings.

3.1.1 Cross-situational learning
A well-established account of word learning from perceptual context
is called cross-situational learning, a bottom-up strategy in which
the learner draws on the patterns of co-occurrence between a word
and its referent across situations in order to reduce the number of
possible mappings (Quine, 1960; Carey, 1978; Pinker, 1989). Vari-
ous experimental studies have shown that both children and adults
use cross-situational evidence for learning new words (Yu & Smith,
2007; Smith & Yu, 2008; Vouloumanos, 2008; Vouloumanos & Werker,
2009).

Cognitive word learning models have been extensively used to
study how children learn robust word-meaning associations despite
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the high rate of noise and ambiguity in the input they receive. Most
of the existing models are either simple associative networks that
gradually learn to predict a word form based on a set of semantic
features (Li et al., 2004; Regier, 2005), or are rule-based or proba-
bilistic implementations which use statistical regularities observed in
the input to detect associations between linguistic labels and visual
features or concepts (Siskind, 1996; Frank et al., 2007; Yu, 2008; Fa-
zly et al., 2010b). These models all implement different (implicit or
explicit) variations of the cross-situational learning mechanism, and
demonstrate its efficiency in learning robust mappings between words
and meaning representations in presence of noise and perceptual am-
biguity.

However, a main obstacle to developing realistic models of child
word learning is lack of resources for reconstructing perceptual con-
text. The input to a usage-based cognitive model must contain the
same information components and statistical properties as naturally-
occurring data children are exposed to. A large collection of tran-
scriptions and video recordings of child-adult interactions has been
accumulated over the years (MacWhinney, 2014), but few of these re-
sources provide adequate semantic annotations that can be automati-
cally used by a computational model. As a result, the existing models
of word learning have relied on artificially generated input (Siskind,
1996). The meaning of each word is represented as a symbol or a set
of semantic features that are selected arbitrarily or from lexical re-
sources such as WordNet (Fellbaum, 1998), and the visual context is
built by sampling these symbols. Some models add additional noise
to data by randomly adding or removing meaning symbols to/from
the perceptual input (Fazly et al., 2010b).
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Carefully constructed artificial input is useful in testing the plau-
sibility of a learning mechanism, but comparisons with manually
annotated visual scenes show that these artificially generated data
sets often do not show the same level of complexity and ambiguity
as naturally occurring perceptual context (Matusevych et al., 2013;
Beekhuizen et al., 2013).

3.1.2 Learning meanings from images
To investigate the plausibility of cross-situational learning in a more
naturalistic setting, we propose to use visual features from collections
of images and their captions as input to a word learning model. In the
domain of human-computer interaction (HCI) and robotics, a number
of models have investigated the acquisition of terminology for visual
concepts such as color and shape from visual data. Such concepts
are learned based on communication with human users (Fleischman
& Roy, 2005; Skocaj et al., 2011). Because of the HCI setting, they
need to make simplifying assumptions about the level of ambiguity
and uncertainty about the visual context.

The input data we exploit in this research has been used for much
recent work in NLP and machine learning whose goal is to develop
multimodal systems for practical tasks such as automatic image cap-
tioning. This is a fast-growing field and a detailed discussion of it
is beyond the scope of this paper. Recent systems include Karpathy
et al. (2014), Mao et al. (2014b), Kiros et al. (2014), Donahue et al.
(2015), Vinyals et al. (2015b), Venugopalan et al. (2015), Chen &
Zitnick (2014), Fang et al. (2015). The majority of these approaches
rely on convolutional neural networks for deriving representations of
visual input, and then generate the captions using various versions
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of recurrent neural network language models conditioned on image
representations. For example Vinyals et al. (2015b) use the deep
convolutional neural network of Szegedy et al. (2015a) trained on
ImageNet to encode the image into a vector. This representation
is then decoded into a sentence using a Long Short-Term Memory
recurrent neural network (Hochreiter & Schmidhuber, 1997). Words
are represented by embedding them into a multidimensional space
where similar words are close to each other. The parameters of this
embedding are trainable together with the rest of the model, and
are analogous to the vector representations learned by the model pro-
posed in this paper. The authors show some example embeddings
but do not analyze or evaluate them quantitatively, as their main
focus is on the captioning performance.

Perhaps the approach most similar to ours is the model of Bruni
et al. (2014). In their work, they train multimodal distributional se-
mantics models on both textual information and bag-of-visual-words
features extracted from captioned images. They use the induced se-
mantic vectors for simulating word similarity judgments by humans,
and show that a combination of text and image-based vectors can
replicate human judgments better than using uni-modal vectors. This
is a batch model and is not meant to simulate human word learning
from noisy context, but their evaluation scheme is suitable for our
purposes.

Lazaridou et al. (2015) propose a multimodal model which learns
word representations from both word co-occurrences and from visual
features of images associated with words. Their input data consists of
a large corpus of text (without visual information) and additionally
of the ImageNet dataset (Deng et al., 2009) where images are labeled
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with WordNet synsets.1 Thus, strictly speaking their model does
not implement cross-situational learning because a subset of words is
unambiguously associated with certain images.

3.1.3 Our study
In this paper we investigate the plausibility of cross-situational learn-
ing of word meanings in a more naturalistic setting. Our goal is to
simulate this mechanism under the same constraints that humans
face when learning a language, most importantly by learning in a
piecemeal and incremental fashion, and facing noise and ambiguity
in their perceptual environment. (We do not investigate the role of
sentence structure on word learning in this study, but we discuss this
issue in Section 3.5).

For simulation of the visual context we use two collections of im-
ages of natural scenes, Flickr8K (F8k) (Rashtchian et al., 2010) and
Flickr30K (F30k) (Young et al., 2014), where each image is associ-
ated with several captions describing the scene. We extract visual
features from the images and learn to associate words with probabil-
ity distributions over these features. This has the advantage that we
do not need to simulate ambiguity or referential uncertainty – the
data has these characteristics naturally.

The challenge is that, unlike in much previous work on cross-
situational learning of word meanings, we do not know the ground-
truth word meanings, and thus cannot directly measure the progress
and effectiveness of learning. Instead, we use indirect measures such
as (i) the correlation of the similarity of learned word meanings to

1The synsets of WordNet are groups of synonyms that represent an abstract
concept.
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word similarities as judged by humans, and (ii) the accuracy of pro-
ducing words in response to an image. Our results show that from
pairings of scenes and descriptions it is feasible to learn meaning
representations that approximate human similarity judgments. Fur-
thermore, we show that our model is able to name image descriptors
considerably better than the frequency baseline and names a large
variety of these target concepts. In addition we present a pilot exper-
iment for word production using the ImageNet data set and qualita-
tively show that our model names words that are conceptually related
to the images.

3.2 Word learning model
Latest existing cross-situational models formulate word learning as
a translation problem, where the learner must decide which words
in an utterance correspond to which symbols (or potential referents)
in the perceptual context (Yu & Ballard, 2007; Fazly et al., 2010b).
For each new utterance paired with a symbolic representation of the
visual scene, first the model decides which word is aligned with which
symbol based on previous associations between the two. Next, it
uses the estimated alignments to update the meaning representation
associated with each word.

We introduce a novel computational model for cross-situational
word learning from captioned images. We reformulate the problem
of learning the meaning of words as a translation problem between
words and a continuous representation of the scene; that is, the visual
features extracted from the image. In this setting, the model learns
word representations by taking images and their descriptions one pair
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at a time. To learn correspondences between English words and im-
age features, we borrow and adapt the translation-table estimation
component of the IBM Model 1 (Brown et al., 1993). The learning
results in a translation table between words and image-features, i.e.
a list of probabilities of image-features given a word.

3.2.1 Visual input
The features of the images are extracted by training a 16-layer con-
volutional neural network (CNN) (Simonyan & Zisserman, 2015) on
an object recognition task.2 The network is trained to discriminate
among 1,000 different object labels on the ImageNet dataset (Deng
et al., 2009). The last layer of the CNN before the classification layer
contains high level visual features of the images, invariant to partic-
ulars such as position, orientation or size. We use the activation vec-
tor from this layer as a representation of the visual scene described
in the corresponding caption. Each caption is paired with such a
4,096-dimensional vector and used as input to a cross-situational word
learner. Figure 3.1 shows three sample images from the F8k dataset
most closely aligned with a particular dimension, as measured by the
cosine similarity between the image and a unit vector parallel to the
dimension axis. For example, dimension 1,000 seems to be related to
water, 2,000 to dogs or perhaps grass, and 3,000 to children.

2We used the F8k and F30k features available at http://cs.stanford.
edu/people/karpathy/deepimagesent/ and the data handling utilities from
https://github.com/karpathy/neuraltalk for our experiments. The pre-
trained CNN can be used through the Caffe framework (Jia et al., 2014) and is
available at the ModelZoo https://github.com/BVLC/caffe/wiki/Model-Zoo.
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Dimension Top 3 images

1,000

2,000

3,000

Figure 3.1: Dimensions with three most closely aligned images from F8k.
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3.2.2 Learning algorithm
We adapt the IBM model 1 estimation algorithm in the following
ways3: (i) like Fazly et al. (2010b) we run it in an online fashion,
and (ii) instead of two sequences of words, our input consists of one
sequence of words on one side, and a vector of real values represent-
ing the image on the other side. The dimensions are indexes into
the visual feature “vocabulary”, while the values are interpreted as
weights of these “vocabulary items”. In order to get an intuitive un-
derstanding of how the model treats the values in the feature vector,
we could informally liken these weights to word counts. As an ex-
ample consider the following input with a sentence and a vector of 5
dimensions (i.e. 5 features):

• The blue sky

• (2, 0, 2, 1, 0)

Our model treats this equivalently to the following input, with
the values of the dimensions converted to “feature occurrences” of
each feature fn.

• The blue sky

• f1 f1 f3 f3 f4

The actual values in the image vectors are always non-negative,
since they come from a rectified linear (ReLu) activation. How-
ever, they can be fractional, and thus strictly speaking cannot be

3The source code for our model is available at https://github.com/
kadarakos/IBMVisual.

58

https://github.com/kadarakos/IBMVisual
https://github.com/kadarakos/IBMVisual


literal counts. We simply treat them as generalized, fractional fea-
ture “counts”. The end result is that given the lists of words in the
image descriptions and the corresponding image vectors the model
learns a probability distribution t(f |w) over feature-vector indexes f
for every word w in the descriptions.

Algorithm 1 Sentence-vector alignment model (Visual)
1: Input: visual feature vectors paired with sentences

((V1, S1), . . . , (VN , SN))
2: Output: translation table t(f |w)
3: D ← dimensionality of feature vectors
4: ϵ← 1 ▷ Smoothing coefficient
5: a[f, w]← 0, ∀f, w ▷ Initialize count tables
6: a[·, w]← 0, ∀w
7: t(f |w)← 1

D
▷ Translation probability t(f |w)

8: for each input pair (vector V , sentence S) do
9: for each feature index f ∈ {1, . . . , D} do

10: Zf ←
∑

w∈S t(f |w) ▷ Normalization constant Zf
11: for each word w in sentence S do
12: c← 1

Zf
× V [f ]× t(f |w) ▷ Expected count c

13: a[f, w]← a[f, w] + c
14: a[·, w]← a[·, w] + c ▷ Updates to count tables
15: t(f |w)← a[f,w]+ϵ

a[·,w]+ϵD ▷ Recompute translation
probabilities

16: end for
17: end for
18: end for

This is our sentence-vector alignment model, Visual. In the in-
terest of cognitive plausibility, we train it using a single-pass, online
algorithm. Algorithm 1 shows the pseudo-code. Our input is a se-
quence of pairs of D-dimensional feature vectors and sentences, and
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the output is a translation table t(f |w). We maintain two count
tables of expected counts a[f, w] and a[·, w] which are used to incre-
mentally recompute the translation probabilities t(f |w). The initial
translation probabilities are uniform (line 7). In lines 12-14 the count
tables are updated, based on translation probabilities weighted by the
feature value V [f ], and normalized over all the words in the sentence.
In line 15 the translation table is in turn updated.

3.2.3 Baseline models
To asses the quality of the meaning representations learned by our
sentence-vector alignment model Visual, we compare its performance
in a set of tasks to the following baselines:

• Monoling: instead of aligning each sentence with its corre-
sponding visual vector, this variation aligns two copies of each
sentence with each other, and thus learns word representations
based on word-word co-occurrences4.

• Word2Vec: for comparison we also report results with the
skip-gram embedding model, also known as word2vec which
builds word representations based on word-word co-occurrences
as well (Mikolov et al., 2013a,b). Word2vec learns a vector
representation (embedding) of a word which maximizes perfor-
mance on predicting words in a small window around it.

4This model does not estimate probabilities of translation of a word to itself,
that is probabilities of the form t(w|w).
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3.3 Experiments

3.3.1 Image datasets
We use image-caption datasets for our experiments. F8k (Rashtchian
et al., 2010) consists of 8000 images and five captions for each image.
F30k (Young et al., 2014) extends the F8k and contains 31,783 im-
ages with five captions each summing up to 158,915 sentences. For
both data sets we use the splits from Karpathy et al. (2014), leav-
ing out 1000 images for validation and 1000 for testing from each
set. Table 3.1 summarizes the statistics of the Flickr image-caption
datasets.

F8k F30k
Train images 6,000 29,780
Validation images 1,000 1,000
Test images 1,000 1,000
Image in total 8,000 31,780
Captions per image 5 5
Captions in total 40,000 158,900

Table 3.1: Flickr image caption datasets.

For the Single-concept image descriptions experiments reported
in section 3.3.4, we also use the ILSVRC2012 subset of ImageNet
(Russakovsky et al., 2015), a widely-used data set in the computer
vision community. It is an image database that annotates the Word-
Net noun synset hierarchy with images. It contains 500 images per
synset on average.
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3.3.2 Word similarity experiments
A common evaluation task for assessing the quality of learned se-
mantic vectors for words is measuring word similarity. A number
of experiments have elicited human ratings on the similarity and/or
relatedness of a list of word pairs. For instance one of the data sets
we used was the SimLex999 data set, which contains similarity judg-
ments for 666 noun pairs (organ-liver 6.15), 222 verb pairs (occur-
happen 1.38) and 111 adjective pairs (nice-cruel 0.67) elicited by 500
participants recruited from Mechanical Turk. These types of data
sets are commonly used as benchmarks for models of distributional
semantics, where the learned representations are expected to show a
significant positive correlation with human similarity judgments on
a large number of word pairs.

We selected a subset of the existing benchmarks according to the
size of their word pairs that overlap with our restricted vocabulary.
We ran a statistical power analysis test to estimate the minimum
number of required word pairs needed in our experiments. The pro-
jected sample size was N = 210 with p = .05, effect-size r = .2

and power = 0.9. Thus some of the well-known benchmarks were
excluded due to their small sample size after we excluded words not
present in our datasets.5

The four standard benchmarks that contain the minimum number
of word pairs are: the full WS-353 (Finkelstein et al., 2001), MTurk-
771 (Radinsky et al., 2011), MEN (Bruni et al., 2014) and SimLex999
(Hill et al., 2015). Note that the MTurk dataset only contains simi-
larity judgments for nouns. Also, a portion of the full WordSim-353

5These include RG-65 (Rubenstein & Goodenough, 1965), MC-30 (Miller &
Charles, 1991) and YP-130 (Yang & Powers, 2006).
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dataset reports relatedness ratings instead of word similarity.

3.3.3 Effect of concreteness on similarity judg-
ments

The word similarity judgments provide a macro evaluation about the
overall quality of the learned word representations. For more fine-
grained analysis we turn to the dichotomy of concrete (e.g. chair,
car) versus abstract (e.g. love, sorrow) nouns. Evidence presented by
Recchia & Jones (2012) shows that in naming and lexical decision
tasks the early activation of abstract concepts is facilitated by rich
linguistic contexts, while physical contexts promote the activation of
concrete concepts. Based on these recent findings, Bruni et al. (2014)
suggest that in case of computational models concrete words (such as
names for physical objects and visual properties) are easier to learn
from perceptual/visual input and abstract words are mainly learned
based on their co-occurrence with other words in text. Following
Bruni et al. (2014), but using novel methodology, we also test this
idea and examine whether more concrete words benefit more from
visual features compared with less concrete ones.

In their work Bruni et al. (2014) use the automatic method from
Turney et al. (2011) to assign concreteness values to words and split
the MEN corpus in concrete and abstract chunks. From their ex-
periments they draw the conclusion that visual information boosts
their models’ performance on concrete nouns. However, whereas the
multi-modal embeddings of Bruni et al. (2014) are trained using an
unbalanced corpus of large quantities of textual information and far
poorer visual stimuli, our visual embeddings are learned on a par-
allel corpus of sentences paired with images. To our purposes, this
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balance in the sources of information is critical as we aim at model-
ing word learning in humans. As a consequence of this setting we
rather hypothesized that solely relying on visual features would re-
sult in better performance on more concrete words than on abstract
ones and conversely, learning language solely from textual features
would lead to higher correlations on the more abstract portion of the
vocabulary.

To test this hypothesis, MEN, MTurk and Simlex999 datasets
were split in two halves based on concreteness score of the word
pairs. The ”abstract” and ”concrete” subclasses for each data set
are obtained by ordering the pairs according to their concreteness
and then partition the ordered tuples in halves. We defined the con-
creteness of a word pair as the product of the concreteness scores of
the two words. The scores are taken from the University of South
Florida Free Association Norms dataset (Nelson et al., 2004). Ta-
ble 3.2 provides an overview of the benchmarks we use in this study.
Column ”Concreteness” shows the average concreteness scores of all
words pairs per data set, while columns ”Concrete” and ”Abstract”
contain the average concreteness of the concrete and abstract halves
of the word-pairs respectively.

3.3.4 Word production
Learning multi-modal word representations gives us the advantage
of replicating real-life tasks such as naming visual entities. In this
study, we simulate a word production task as follows: given an image
from the test set, we rank all words in our vocabulary according to
their cosine similarity to the visual vector representing the image. We
evaluate these ranked lists in two different ways.
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#Pairs Concreteness
Total F8k F30k Full set Concrete Abstract

WS353 353 104 232 25.09 35.44 16.22
SimLex999 999 412 733 23.86 35.72 11.99
MEN 3000 2069 2839 29.77 36.28 23.26
MTurk771 771 295 594 25.89 34.02 16.16

Table 3.2: Summary of the word-similarity benchmarks, showing the number of
word pairs in the benchmarks and the size of their overlap with the F8k and F30k
data sets. The table also reports the average concreteness of the whole, concrete
and abstract portions of the benchmarks.

3.3.4.1 Multi-word image descriptions.

We use images from the test portion of the F8k and F30k datasets as
benchmarks. These images are each labeled with up to five captions,
or multi-word descriptions of the content of the image. To evaluate
the performance of our model in producing words for each image, we
construct the target description of an image as the union of the words
in all its captions (with stop-words6 removed). We compare this set
with the top N words in our predicted ranked word list. As a base-
line for this experiment we implemented a simple frequency baseline
Freq, which for every image retrieves the top N most frequent words.
The second model Cosine uses our Visual word-embeddings and
ranks the words based on their cosine similarity to the given image.
The final model Prior implements a probabilistic interpretation of
the task

P (wi|ij) ∝ P (ij|wi)× P (wi), (3.1)
6Function words such as the, is, at, what, there; we used the stop-word list

from the Python library NLTK.
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where wi is a word from the vocabulary of the captions and ij

is an image from the collections of images I. The probability of an
image given a word is defined as

P (ij|wi) =
cosine(ij, wi)∑|I|
k=1 cosine(ik, wi),

(3.2)

where cosine(ij, wi) is the cosine between the vectorial representa-
tion of ij and the Visual word-embedding wi. Since in any natural
language corpus the distribution of word frequencies is expected to be
very heavy tailed, in the model Prior, rather than using maximum
likelihood estimation, we reduce the importance of the differences in
word-frequencies and smooth the prior probability P (wi) as described
by equation 3.3, where N is the number of words in the vocabulary.

P (wi) =
log(count(wi))∑N
j=1 log(count(wj))

(3.3)

As a measure of performance, we report Precision at 5 (P@5)
between the ranked word list and the target descriptions; i.e., pro-
portion of correct target words among the top 5 predicted ranked
words. Figure 3.2 shows an example of an image and its multi-word
captions in the validation portion of the F30k dataset.

3.3.4.2 Single-concept image descriptions

Even though we use separate portions of F8k and F30k for training
and testing, these subsets are still very similar. To test how gen-
eral the Visual word representations are, we use images from the
ILSVRC2012 subset of ImageNet (Russakovsky et al., 2015) as bench-
mark. The major difference between these images and the ones from
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Figure 3.2: Multiword image description example. Below the image are the 5
captions describing the image, the union of words that we take as targets, the top
5 predicted and the list of correct words and the P@5 score for the given test case.
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Figure 3.3: Example of the Single-concept image description task from the vali-
dation portion of the ILSVRC2012 subset of ImageNet. The terms ”sea anemone”
and ”anemone” are unknown to Visual and ”animal” is the first word among it’s
hypernyms that appear in the vocabulary of F30k.

F8k and F30k datasets is that labels of the images in ImageNet are
synsets from WordNet, which identify a single concept present in the
image instead of providing a natural descriptions of its full content.
Providing a quantitative evaluation in this case is not straightforward
for two main reasons. First, the vocabulary of our model is restricted
and the synsets in the ImageNet dataset are quite varied. Second, the
synset labels can be very precise, much more so than the descriptions
provided in the captions that we use as our training data.

To attempt to solve the vocabulary mismatch problem, we use
synset hypernyms from WordNet as substitute target descriptors. If
none of the lemmas in the target synset are in the vocabulary of the
model, the lemmas in the hypernym synset are taken as new targets,
until we reach the root of the taxonomy. However, we find that in
a large number of cases these hypernyms are unrealistically general
given the image. Figure 3.3 illustrates these issues.
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3.4 Results
We evaluate our model on two main tasks: simulating human judg-
ments of word similarity7 and producing labels for images. For all
performance measures in this sections (Spearman’s ρ, P@5), we esti-
mated the confidence intervals using the Bias-corrected Accelerated
bootstrapping method8 (Efron, 1982).

3.4.1 Word similarity
We simulate the word similarity judgment task using the induced
word vectors by three models: Visual, Monoling, and Word2Vec.
All models were trained on the tokenized training portion of the F30k
data set. While Visual is presented with pairs of captions and the
4,096 dimensional image-vectors, MonoLing and Word2Vec9 are
trained solely on the sentences in the captions. The smoothing coeffi-
cient ϵ = 1.0 was used for Visual and Monoling. The Word2Vec
model was run for one iteration with default parameters, except for
the minimum word count (as our models also consider each word in
each sentence): feature-vector-size=100, alpha=0.025, window-size=5, min-
count=5, downsampling=False, alpha=0.0001, model=skip-gram, hierarchical-
sampling=True, negative-sampling=False.

Figure 3.4 illustrates the correlation of the similarity judgments
by the three models with those of humans on four datasets. Table 3.3

7We made available the source code used for running word similar-
ity/relatedness experiments on https://bitbucket.org/kadar_akos/
wordsims.

8 Provided by the scikits-bootstrap Python package https://github.com/
cgevans/scikits-bootstrap.

9We used the Word2Vec implementation from the gensim Python package
available at https://radimrehurek.com/gensim/models/word2vec.html.
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shows the results in full detail: it reports the Spearman rank-order
correlation coefficient between the human similarity judgments and
the pairwise cosine similarities of the word vectors per data set along
with the confidence intervals estimated by using bootstrap (the cor-
relation values marked by a * were significant at level p < 0.05).

Although Visual achieves a higher correlation than the other
two models on all datasets, the overlapping confidence intervals sug-
gest that, in this particular setting, both Visual and Word2Vec
perform very similarly in approximating human similarity judgments.
This result is particularly interesting as these models exploit different
sources of information: The input to Word2Vec is text only (i.e.,
the set of captions) and it learns from word-word co-occurrences,
while Visual takes pairs of image vectors and sentences as input,
and thus learns from word-scene co-occurrences.

The significant medium-sized correlation (p < .001, ρ = 0.47 95%
CI [0.44, 0.50]) with reasonably narrow confidence intervals on the
large number of samples, N = 2, 839, of the MEN data set supports
the hypothesis that the similarities between the meaning representa-
tions learned by Visual mirror the distance between word pairs as
estimated by humans. This result suggests that it is feasible to learn
word meanings from co-occurrences of sentences with noisy visual
scenes. However, on all other data sets, the effect sizes for all models
are small and their performances vary considerably given different
subsamples of the benchmarks.

3.4.1.1 Concreteness

Based on the previous findings of Bruni et al. (2014), we expected
that models relying on perceptual cues perform better on the concrete
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Figure 3.4: Comparison of models on approximating word similarity judgments.
The length of the bars indicate the size of the correlation measured by Spearman’s
ρ, longer bars indicate better similarity between the models’ predictions and the hu-
man data. The labels on the y-axis contain the names of the data sets and indicate
the number of overlapping word pairs with the vocabulary of the F30k data set. All
models were trained on the training portion of the F30k data set.
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WS SimLex MEN MTurk
Visual 0.18* 0.22* 0.47* 0.27*

CI[0.05, 0.32] CI[0.15, 0.29] CI[0.44, 0.50] CI[0.19, 0.34]
Monoling 0.08 0.18* 0.23* 0.17*

CI[-0.06, 0.21] CI[0.11, 0.25] CI[0.19, 0.26] CI[0.04, 0.19]
Word2Vec 0.16* 0.10* 0.47* 0.19*

CI[0.02, 0.28] CI[0.02, 0.17] CI[0.43 0.49] CI[0.11, 0.26]

Table 3.3: Word similarity correlations with human judgments measured by Spear-
man’s ρ. Models were trained on the training portion of the F30k data set. The *
next to the values marks the significance of the correlation at level p < 0.05. The
confidence intervals for the correlation are estimated using bootstrap.

portion of the word-pairs in the word-similarity benchmarks. Further-
more, we expected approximating human word similarity judgments
on concrete word-pairs to be generally easier. As discussed in sec-
tion 3.3.3, we split the data sets into abstract and concrete halves
and ran the word similarity experiments on the resulting portions of
the word-pairs for comparison. Table 3.4 only reports the results on
MEN and Simlex999 as these were the only benchmarks that had
at least 200 word-pairs after partitioning. Table 3.2 summarizes the
average concreteness of the different portions of the data sets.

On all data sets, Visual seems to perform considerably better
on the concrete word-pairs then on abstract ones. On the abstract
half of the MEN data set, the performance of Visual is ρ = 0.35,
95% CI[0.29, 0.41], while it is ρ = 0.56, 95% CI[0.49, 0.59] on the
concrete portion. The non-overlapping confidence intervals support
the hypothesis that Visual does significantly better on the concrete
word pairs. This pattern, however, is not observed for Word2Vec as
there is no significant difference in its performance given the different
concreteness levels of the word pairs. Splitting the word pairs in two
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MEN SimLex
Abstract Concrete Abstract Concrete

Visual 0.35* 0.55* 0.16* 0.39*
CI[0.29, 0.41] CI[0.49, 0.59] CI[0.04, 0.25] CI[0.28, 0.47]

Word2Vec 0.48 0.45 0.14 0.18
CI[0.43, 0.53] CI[0.39, 0.50] CI[0.02, 0.25] CI[0.07, 0.29]

Table 3.4: The table reports the Spearman rank-order correlation coefficient on
the abstract and concrete portions of the data sets separately as well as the confi-
dence intervals around the effect-sizes estimated by using bootstrap. The * next to
the values indicates significance at level p < 0.05.

groups based on their concreteness scores reveals that performance of
Visual is affected by concreteness and that it only performs better
than Word2Vec on the more concrete word pairs. Another pattern
that the analysis reveals is that the average concreteness of the data
sets is reflected in the performance of the models: for both Visual
and Word2Vec the rank of their performance follows the rank of
concreteness of the benchmarks.

3.4.2 Word production
In this set of experiments, we evaluate the word meaning vectors
learned by Visual by simulating the task of word production for
an image, as described in Section 3.3.4. These experiments can be
viewed as computational simulations of a language task where human
subjects associate words to given images. Words were ranked accord-
ing to their cosine similarity to a given image vector. The Visual
model was trained on the training portion of the F8k and F30k data
sets. We report results on two variations of the word production task:
multi-word image descriptors, and single-concept image descriptors.
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Figure 3.5: Models’ performance on word similarity judgments as a function of the
concreteness of the word pairs.

3.4.2.1 Multi-word image descriptors

The objective of the model in this experiment is to rank only words
in the top N that occur in the set containing all words from the
concatenation of the 5 captions of a given image with stop-words
removed. The ranking models used for these experiments (Freq,
Cosine, and Prior) are described in section 3.3.4. Table 3.5 reports
the results of the experiments on the respective test portions of the
F8k and F30k datasets as estimated by P@5. We estimated the
variability of the models’ performance by calculating these measures
per sample and estimating the confidence intervals around the means
using bootstrap.

On these particular data sets the naive frequency baseline can
perform particularly well: by only retrieving the sequence wearing,
woman, people, shirt, blue the ranking model Freq scores a P@5=.27
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on F30k. Incorporating both the meaning representations learned by
Visual and the prior probabilities of the words, the non-overlapping
confidence intervals suggest that Prior significantly outperforms
Freq — P@5=0.42, 95% CI[0.41, 0.44].

In addition to P@5, we also report the number of word types that
were retrieved correctly given the images (column Words@5 on table
3.5). This measure was inspired by the observation that by focusing
only on the precision scores it seems like incorporating visual infor-
mation rather than just using raw word-frequency statistics provides
a significant, but small advantage. However, taking into considera-
tion that Prior retrieves 178 word types correctly suggests that it
can retrieve less generic words that are especially descriptive of fewer
scenes.

To have a more intuitive grasp on the performance of Prior, it
is worth taking also into consideration the distribution of P@5 scores
over the test cases. When trained and tested on F30k in most cases
(34%), Prior retrieves two words correctly in the top 5 and in 23%
and 25% of the cases it retrieves one and three respectively. In only
6% of the time P@5 = 0, which means that it is very unlikely that
Prior named unrelated concepts given an image. These results sug-
gest that Visual learns word meanings that allow for labeling unseen
images with reasonable accuracy using a large variety of words.

3.4.2.2 Single-concept image descriptors

The motivation for this experiment was to assess the generalizabil-
ity of the word-representations learned by Visual. Similarly to the
previous task, the goal here is to associate words to a given image,
but in this case the images are drawn from the validation set of
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F8k F30k
P@5 Words@5 P@5 Words@5

Freq 0.20 5 0.27 5
CI[0.19, 0.21] CI[0.26, 0.29]

Cosine 0.16 310 0.14 371
CI[0.15, 0.17] CI[0.13, 0.15]

Prior 0.44 135 0.42 178
CI[0.42, 0.45] CI[0.41, 0.44]

Table 3.5: Results for the multi-word image descriptors experiments reported on
the test sets of F8k and F30k. Words@5 the number of correctly retrieved word
types in the top 5. The confidence intervals below P@5 scores were estimated using
bootstrap.

ILSVRC2012 portion of ImageNet (Russakovsky et al., 2015). Pro-
viding quantitative results is not as straightforward as in the case
of multi-word image descriptors, since these images are not labeled
with target descriptions, but with a synset from WordNet. As demon-
strated in Figure 3.6, some of the lemmas in the target synsets are
far too specific or unnatural for our purposes, for example schooner
for an image depicting a sailboat or alp for an image of a mountain.
In other cases, a particular object is named which might not be the
most salient one, for example freight car for a picture of a graffiti
with three pine trees on the side of railway carriage.

We made an attempt to search through the lemmas in the hy-
pernym paths of the synsets until a known target lemma is reached.
However, as demonstrated by examples in Figure 3.6, these hyper-
nyms are often very general (e.g. device) and predicting such high-
level concepts as descriptors of the image is unrealistic. In other
cases, the lemmas from the hypernym synsets are simply misleading;
for example, wood for describing a wooden wind instrument. As can
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Figure 3.6: The caption above the images show the target labels, the hypernyms
that were considered as a new target if the original was not in the vocabulary and
the top N predicted words. In a large number of cases the guesses of the model
are conceptually similar to the images, although, do not actually overlap with the
labels or the hypernyms.

be seen in the examples in Figure 3.6, the top ranked words predicted
by our model are in fact conceptually more similar to the images cov-
ering a variety of objects and concepts than the labels specified in
the dataset.

We conclude that in the future, to quantitatively investigate the
cognitive plausibility of cross-situational models of word learning, the
collection of feature production norms for ImageNet (Russakovsky
et al., 2015) would be largely beneficial.
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3.5 Discussion and conclusion
We have presented a computational cross-situational word learning
model that learns word meanings from pairs images and their natural
language descriptions. Unlike previous word learning studies which
often rely on artificially generated perceptual input, the visual fea-
tures we extract from images of natural scenes offers a more realistic
simulation of the cognitive tasks humans face, since our data includes
a significant level of ambiguity and referential uncertainty.

Our results suggest that the proposed model can learn meaningful
representations for individual words from varied scenes and their mul-
tiword descriptions. Learning takes place incrementally and without
assuming access to single-word unambiguous utterances or corrective
feedback. When using the learned visual vector representations for
simulating human ratings of word-pair similarity, our model shows
significant correlation with human similarity judgments on a number
of benchmarks. Moreover, it moderately outperforms other models
that only rely on word-word co-occurrence statistics to learn word
meaning.

The comparable performance of visual versus word-based models
seems to be in line with Louwerse (2011), who argues that linguistic
and perceptual information show a strong correlation, and therefore
meaning representations solely based on linguistic data are not distin-
guishable from representations learned from perceptual information.
However, an analysis of the impact of word concreteness on the per-
formance of our model shows that visual features are especially use-
ful when estimating the similarity of more concrete word pairs. In
contrast, models that rely on word-based cues do not show such im-
provement when judging the similarity of concrete word pairs. These
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results suggest that these two sources of information might best be
viewed as complementary, as also argued by Bruni et al. (2014).

We also used the word meaning representations that our model
learns from visual input to predict the best label for a given image.
This task is similar to word production in language learners. Our
quantitative and qualitative analyses show that the learned represen-
tations are informative and the model can produce intuitive labels
for the images in our dataset. However, as discussed in the previous
section, the available image collections and their labels are not de-
veloped to suit our purpose, as most of the ImageNet labels are too
detailed and at a taxonomic level which is not compatible with how
language learners name a visual concept.

Finally, a natural next step for this model is to also take into ac-
count cues from sentence structure. For example, Alishahi & Chru-
pała (2012) try to include basic syntactic structure by introducing
a separate category learning module into their model. Alternatively,
learning sequential structure and visual features could be modeled in
an integrated rather than modular fashion, as done by the multimodal
captioning systems based on recurrent neural nets (see section 3.1.2).
We are currently developing this style of integrated model to investi-
gate the impact of structure on word learning from a cognitive point
of view.
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4
Representation of linguistic form
and function in recurrent neural

networks

Abstract We present novel methods for analyzing the activation
patterns of RNNs from a linguistic point of view and explore the
types of linguistic structure they learn. As a case study, we use a
standard standalone language model, and a multi-task gated recur-
rent network architecture consisting of two parallel pathways with
shared word embeddings; The Visual pathway is trained on predict-
ing the representations of the visual scene corresponding to an input
sentence, whereas the Textual pathway is trained to predict the
next word in the same sentence. We propose a method for estimat-
ing the amount of contribution of individual tokens in the input to
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the final prediction of the networks. Using this method, we show that
the Visual pathway pays selective attention to lexical categories and
grammatical functions that carry semantic information, and learns to
treat word types differently depending on their grammatical function
and their position in the sequential structure of the sentence. In con-
trast, the language models are comparatively more sensitive to words
with a syntactic function. Further analysis of the most informative
n-gram contexts for each model shows that in comparison to the Vi-
sual pathway, the language models react more strongly to abstract
contexts that represent syntactic constructions.
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This chapter is based on Kádár, Á., Chrupała, G., & Alishahi,
A. (2017). Representation of linguistic form and function in recurrent
neural networks. Computational Linguistics, 43(4), 761-780.
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4.1 Introduction
Recurrent neural networks (RNNs) were introduced by Elman (1990)
as a connectionist architecture with the ability to model the temporal
dimension. They have proved popular for modeling language data as
they learn representations of words and larger linguistic units directly
from the input data, without feature engineering. Variations of the
RNN architecture have been applied in several NLP domains such as
parsing (Vinyals et al., 2015a) and machine translation (Bahdanau
et al., 2015), as well as in computer vision applications such as image
generation (Gregor et al., 2015) and object segmentation (Visin et al.,
2016). RNNs are also important components of systems integrating
vision and language, e.g. image (Karpathy & Fei-Fei, 2015) and video
captioning (Yu et al., 2015).

These networks can represent variable-length linguistic expres-
sions by encoding them into a fixed-size low-dimensional vector. The
nature and the role of the components of these representations are
not directly interpretable as they are a complex, non-linear function
of the input. There have recently been numerous efforts to visualize
deep models such as convolutional neural networks in the domain
of computer vision, but much less so for variants of RNNs and for
language processing.

The present paper develops novel methods for uncovering abstract
linguistic knowledge encoded by the distributed representations of
RNNs, with a specific focus on analyzing the hidden activation pat-
terns rather than word embeddings and on the syntactic generaliza-
tions that models learn to capture. In the current work we apply
our methods to a specific architecture trained on specific tasks, but
also provide pointers about how to generalize the proposed analysis
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to other settings.
As our case study we picked the Imaginet model introduced by

Chrupała et al. (2015). It is a multi-task, multi-modal architecture
consisting of two Gated-Recurrent Unit (GRU) (Cho et al., 2014a;
Chung et al., 2014) pathways and a shared word embedding ma-
trix. One of the GRUs (Visual) is trained to predict image vectors
given image descriptions, while the other pathway (Textual) is a
language model, trained to sequentially predict each word in the de-
scriptions. This particular architecture allows a comparative analysis
of the hidden activation patterns between networks trained on two
different tasks, while keeping the training data and the word embed-
dings fixed. Recurrent neural language models akin to Textual
which are trained to predict the next symbol in a sequence are rela-
tively well understood, and there have been some attempts to analyze
their internal states (Elman, 1991; Karpathy et al., 2016, among oth-
ers). In constrast, Visual maps a complete sequence of words to
a representation of a corresponding visual scene and is a less com-
monly encountered, but a more interesting model from the point of
view of representing meaning conveyed via linguistic structure. For
comparison, we also consider a standard standalone language model.

We report a thorough quantitative analysis to provide a linguis-
tic interpretation of the networks’ activation patterns. We present
a series of experiments using a novel method we call omission score
to measure the importance of input tokens to the final prediction of
models that compute distributed representations of sentences. Fur-
thermore, we introduce a more global measure for estimating the
informativeness of various types of n-gram contexts for each model.
These techniques can be applied to various RNN architectures, Re-
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cursive Neural Networks and Convolutional Neural Networks.
Our experiments show that the Visual pathway in general pays

special attention to syntactic categories which carry semantic content,
and particularly to nouns. More surprisingly, this pathway also learns
to treat word types differently depending on their grammatical func-
tion and their position in the sequential structure of the sentence. In
contrast, the Textual pathway and the standalone language model
are especially sensitive to the local syntactic characteristics of the
input sentences. Further analysis of the most informative n-gram
contexts for each model shows that while the Visual pathway is
mostly sensitive to lexical (i.e., token n-gram) contexts, the language
models react more strongly to abstract contexts (i.e., dependency
relation n-grams) that represent syntactic constructions.

4.2 Related work
The direct predecessors of modern architectures were first proposed
in the seminal paper of Elman (1990). He modifies the recurrent neu-
ral network architecture of Jordan (1986) by changing the output-to-
memory feedback connections to hidden-to-memory recurrence, en-
abling Elman networks to represent arbitrary dynamic systems. El-
man (1991) trains an RNN on a small synthetic sentence dataset and
analyzes the activation patterns of the hidden layer. His analysis
shows that these distributed representations encode lexical categories,
grammatical relations and hierarchical constituent structures. Giles
et al. (1991) train RNNs similar to Elman networks on strings gen-
erated by small deterministic regular grammars with the objective
to recognize grammatical and reject ungrammatical strings, and de-
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velop the dynamic state partitioning technique to extract the learned
grammar from the networks in the form of deterministic finite state
automatons.

More closely related is the recent work of Li et al. (2016a), who de-
velop techniques for a deeper understanding of the activation patterns
of RNNs, but focus on models with modern architectures trained on
large scale data sets. More specifically, they train Long Short-Term
Memory networks (LSTM) (Hochreiter & Schmidhuber, 1997) for
phrase-level sentiment analysis and present novel methods to explore
the inner workings of RNNs. They measure the salience of tokens in
sentences by taking the first-order derivatives of the loss with respect
to the word embeddings and provide evidence that LSTMs can learn
to attend to important tokens in sentences. Furthermore, they plot
the activation values of hidden units through time using heat maps
and visualize local semantic compositionality in RNNs. In compar-
ison, the present work goes beyond the importance of single words
and focuses more on exploring structure learning in RNNs, as well
as on developing methods for a comparative analysis between RNNs
that are focused on different modalities (language versus vision).

Adding an explicit attention mechanism that allows the RNNs
to focus on different parts of the input was recently introduced by
Bahdanau et al. (2015) in the context of extending the sequence-to-
sequence RNN architecture for neural machine translation. At the
decoding side this neural module assigns weights to the hidden states
of the decoder, which allows the decoder to selectively pay varying
degrees of attention to different phrases in the source sentence at
different decoding time-steps. They also provide qualitative analysis
by visualizing the attention weigths and exploring the importance
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of the source encodings at various decoding steps. Similarly Rock-
täschel et al. (2016) use an attentive neural network architecture to
perform natural language inference and visualize which parts of the
hypotheses and premises the model pays attention to when deciding
on the entailment relationship. Conversely, the present work focuses
on RNNs without an explicit attention mechanism.

Karpathy et al. (2016) also take up the challenge of rendering
RNN activation patterns understandable, but use character level lan-
guage models and rather than taking a linguistic point of view, focus
on error analysis and training dynamics of LSTMs and GRUs. They
show that certain dimensions in the RNN hidden activation vectors
have specific and interpretable functions. Similarly, Li et al. (2016d)
use a Convolutional Neural Networks (CNN) based on the architec-
ture of Krizhevsky et al. (2012), and train it on the ImageNet dataset
using different random initializations. For each layer in all networks
they store the activation values produced on the validation set of
ILSVRC and align similar neurons of different networks. They con-
clude that while some features are learned across networks, some seem
to depend on the initialization. Other works on visualizing the role of
individual hidden units in deep models for vision synthesize images
by optimizing random images through backpropagation to maximize
the activity of units (Erhan et al., 2009; Simonyan et al., 2014; Yosin-
ski et al., 2015; Nguyen et al., 2016) or to approximate the activation
vectors of particular layers (Mahendran & Vedaldi, 2016; Dosovitskiy
& Brox, 2015).

While this paper was under review, a number of articles appeared
which also investigate linguistic representations in LSTM architec-
tures. In an approach similar to ours, Li et al. (2016b) study the
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contribution of individual input tokens as well as hidden units and
word embedding dimensions by erasing them from the representation
and analyzing how this affects the model. They focus on text-only
tasks and do not take other modalities such as visual input into ac-
count. Adi et al. (2017) take an alternative approach by introducing
prediction tasks to analyze information encoded in sentence embed-
dings about sentence length, sentence content and word order. Fi-
nally, Linzen et al. (2016) examine the acquisition of long-distance
dependencies through the study of number agreement in different
variations of an LSTM model with different objectives (number pre-
diction, grammaticality judgment, and language modeling). Their
results show that such dependencies can be captured with very high
accuracy when the model receives a strong supervision signal (that is,
whether the subject is plural or singular), but simple language mod-
els still capture the majority of test cases. While they focus on an
in-depth analysis of a single phenomenon, in our work we are inter-
ested in methods which make it possible to uncover a broad variety
of patterns of bebavior in RNNs.

In general, there has been a growing interest within computer
vision in understanding deep models, with a number of papers ded-
icated to visualizing learned CNN filters and pixel saliencies (Si-
monyan et al., 2014; Yosinski et al., 2015; Mahendran & Vedaldi,
2015). These techniques have also led to improvements in model per-
formance (Eigen et al., 2014) and transferability of features (Zhou
et al., 2015). To date there has been much less work on such issues
within computational linguistics. We aim to fill this gap by adapting
existing methods as well as developing novel techniques to explore
the linguistic structure learned by recurrent networks.
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4.3 Models
In our analyses of the acquired linguist knowledge, we apply our
methods to the following models:

• Imaginet: A multi-modal Gated Recurrent Unit (GRU) net-
work consisting of two pathways, Visual and Textual, cou-
pled via word embeddings.

• LM: A (unimodal) language model consisting of a GRU net-
work.

• Sum: A network with the same objective as the Visual path-
way of Imaginet, but which uses sum of word embeddings
instead of a GRU.

The rest of this section gives a detailed description of these mod-
els.

4.3.1 Gated Recurrent Neural Networks
One of the main difficulties for training traditional Elman networks
arises from the fact that they overwrite their hidden states at ev-
ery time step with a new value computed from the current input xt

and the previous hidden state ht−1. Similarly to LSTMs, Gated Re-
current Unit networks introduce a mechanism which facilitates the
retention of information over multiple time steps. Specifically, the
GRU computes the hidden state at current time step ht, as the lin-
ear combination of previous activation ht−1, and a new candidate
activation h̃t:
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GRU(ht−1,xt) = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4.1)

where⊙ is elementwise multiplication, and the update gate activation
zt determines the amount of new information mixed in the current
state:

zt = σs(Wzxt +Uzht−1) (4.2)

The candidate activation is computed as:

h̃t = σ(Wxt +U(rt ⊙ ht−1)) (4.3)

The reset gate rt determines how much of the current input xt is
mixed in the previous state ht−1 to form the candidate activation:

rt = σs(Wrxt +Urht−1) (4.4)

where W, U, Wz, Uz, Wr and Ur are learnable parameters.

4.3.2 Imaginet
Imaginet introduced in Chrupała et al. (2015) is a multi-modal GRU
network architecture that learns visually grounded meaning represen-
tations from textual and visual input. It acquires linguistic knowl-
edge through language comprehension, by receiving a description of
a scene and trying to visualise it through predicting a visual repre-
sentation for the textual description, while concurrently predicting
the next word in the sequence.

Figure 4.1 shows the structure of Imaginet. As can be seen from
the figure, the model consists of two GRU pathways, Textual and
Visual, with a shared word embedding matrix. The inputs to the
model are pairs of image descriptions and their corresponding images.
The Textual pathway predicts the next word at each position in
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Figure 4.1: Structure of Imaginet, adapted from Chrupała et al. (2015).

the sequence of words in each caption, whereas the Visual pathway
predicts a visual representation of the image that depicts the scene
described by the caption after the final word is received.

Formally, each sentence is mapped to two sequences of hidden
states, one by Visual and the other by Textual:

hVt = GRUV (hVt−1,xt) (4.5)
hTt = GRUT (hTt−1,xt) (4.6)

At each time step Textual predicts the next word in the sentence
S from its current hidden state hTt , while Visual predicts the image-
vector1 î from its last hidden representation hVt .

î = VhVτ (4.7)
p(St+1|S1:t) = softmax(LhTt ) (4.8)

The loss function is a multi-task objective which penalizes error on the
visual and the textual targets simultaneously. The objective combines

1Representing the full image, extracted from the pre-trained Convolutional
Neural Network of Simonyan & Zisserman (2015).
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cross-entropy loss LT for the word predictions and cosine distance LV

for the image predictions2, weighting them with the parameter α (set
to 0.1).

LT (θ) = −1

τ

τ∑
t=1

log p(St|S1:t) (4.9)

LV (θ) = 1− î · i
∥̂i∥∥i∥

(4.10)

L = αLT + (1− α)LV (4.11)

For more details about the Imaginet model and its performance see
Chrupała et al. (2015). Note that we introduce a small change in the
image representation: we observe that using standardized image vec-
tors, where each dimension is transformed by subtracting the mean
and dividing by standard deviation, improves performance.

4.3.3 Unimodal language model
The model LM is a language model analogous to the Textual path-
way of Imaginet with the difference that its word embeddings are
not shared, and its loss function is the cross-entropy on word predic-
tion. Using this model we remove the visual objective as a factor, as
the model does not use the images corresponding to captions in any
way.

2Note that the original formulation in Chrupała et al. (2015) uses mean
squared error instead; as the performance of Visual is measured on image-
retrieval which is based on cosine distances, we use cosine distance as the visual
loss here.
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4.3.4 Sum of word embeddings
The model Sum is a stripped-down version of the Visual pathway,
which does not share word embeddings, only uses the cosine loss func-
tion, and replaces the GRU network with a summation over word
embeddings. This removes the effect of word order from considera-
tion. We use this model as a baseline in the sections which focus on
language structure.

4.4 Experiments
In this section, we report a series of experiments in which we explore
the kinds of linguistic regularities the networks learn from word-level
input. In Section 4.4.1 we introduce omission score, a metric to
measure the contribution of each token to the prediction of the net-
works, and in Section 4.4.2 we analyze how omission scores are dis-
tributed over dependency relations and part-of-speech categories. In
Section 4.4.3 we investigate the extent to which the importance of
words for the different networks depend on the words themselves,
their sequential position, and their grammatical function in the sen-
tences. Finally, in Section 4.4.4 we systematically compare the types
of n-gram contexts that trigger individual dimensions in the hidden
layers of the networks, and discuss their level of abstractness.

In all these experiments we report our findings based on the Imag-
inet model, and whenever appropriate compare it to our two other
models LM and Sum. For all the experiments, we trained the models
on the training portion of the MSCOCO image-caption dataset (Lin
et al., 2014), and analyzed the representations of the sentences in the
validation set corresponding to 5000 randomly chosen images. The
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Figure 4.2: Omission scores for the example sentence a baby sits on a bed laugh-
ing with a laptop computer open for LM and the two pathways, Textual and
Visual, of Imaginet.

target image representations were extracted from the pre-softmax
layer of the 16-layer CNN of Simonyan & Zisserman (2015).

4.4.1 Computing Omission Scores
We propose a novel technique for interpreting the activation patterns
of neural networks trained on language tasks from a linguistic point
of view, and focus on the high-level understanding of what parts of
the input sentence the networks pay most attention to. Furthermore,
we investigate if the networks learn to assign different amounts of
importance to tokens depending on their position and grammatical
function in the sentences.

In all the models the full sentences are represented by the acti-
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Figure 4.3: Images retrieved for the example sentence a baby sits on a bed laugh-
ing with a laptop computer open (left) and the same sentence with the second
word omitted (right).

vation vector at the end-of-sentence symbol (hend). We measure the
salience of each word Si in an input sentence S1:n based on how much
the representation of the partial sentence S\i = S1:i−1Si+1:n, with the
omitted word Si, deviates from that of the original sentence repre-
sentation. For example, the distance between hend(“the black dog is
running”) and hend(“the dog is running”) determines the importance
of black in the first sentence. We introduce the measure omission(i, S)

for estimating the salience of a word Si:

omission(i, S) = 1− cosine(hend(S),hend(S\i)) (4.12)

Figure 4.2 demonstrates the omission scores for the LM, Visual
and Textual models for an example caption. Figure 4.3 shows the
images retrieved by Visual for the full caption and for the one with
the word baby omitted. The images are retrieved from the validation
set of MS-COCO by: 1) computing the image representation of the
given sentence with Visual; 2) extracting the CNN features for the
images from the set; and 3) finding the image that minimizes the
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cosine distance to the query. The omission scores for Visual show
that the model paid attention mostly to baby and bed and slightly
to laptop, and retrieved an image depicting a baby sitting on a bed
with a laptop. Removing the word baby leads to an image that de-
picts an adult male laying on a bed. Figure 4.2 also shows that in
contrast to Visual, Textual distributes its attention more evenly
across time steps instead of focusing on the types of words related to
the corresponding visual scene. The peaks for LM are the same as
for Textual, but the variance of the omission scores is higher, sug-
gesting that the unimodal language model is more sensitive overall
to input perturbations than Textual.

4.4.2 Omission score distributions

Figure 4.4: Distribution of omission scores for POS (left) and dependency labels
(right), for the Textual and Visual pathways and for LM. Only labels which
occur at least 1250 times are included.
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Figure 4.5: Distributions of log ratios of omission scores of Textual to Visual
per POS (left) and dependency labels (right). Only labels which occur at least
1250 times are included.

The omission scores can be used not only to estimate the im-
portance of individual words, but also of syntactic categories. We
estimate the salience of each syntactic category by accumulating the
omission scores for all words in that category. We tag every word
in a sentence with the part-of-speech (POS) category and the depen-
dency relation (deprel) label of its incoming arc. For example, for
the sentence the black dog, we get (the, DT, det), (black, JJ, amod),
(dog, NN, root). Both POS tagging and dependency parsing are per-
formed using the en_core_web_md dependency parser from the Spacy
package.3

Figure 4.4 shows the distribution of omission scores per POS and
dependency label for the two pathways of Imaginet and for LM.4

3Available at https://spacy.io/.
4The boxplots in this and subsequent figures are Tukey boxplots and should

be interpreted as follows: the box extends from the 25th to the 75th percentile
of the data; the line across the box is the 50th percentile, while the whiskers
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The general trend is that for the Visual pathway, the omission scores
are high for a small subset of labels - corresponding mostly to nouns,
less so for adjectives and even less for verbs - and low for the rest
(mostly function words and various types of verbs). For Textual
the differences are smaller, and the pathway seems to be sensitive
to the omission of most types of words. For LM the distribution
over categories is also relatively uniform, but the omission scores are
higher overall than for Textual.

Figure 4.5 compares the two pathways of Imaginet directly using
the log of the ratio of the Visual to Textual omission scores, and
plots the distribution of this ratio for different POS and dependency
labels. Log ratios above zero indicate stronger association with the
Visual pathway and below zero with the Textual pathway. We
see that in relative terms, Visual is more sensitive to adjectives
(JJ), nouns (NNS, NN), numerals (CD) and participles (VBN), and
Textual to determiners (DT), pronouns (PRP), prepositions (IN)
and finite verbs (VBZ, VBP).

This picture is complemented by the analysis of the relative impor-
tance of dependency relations: Visual pays most attention to the re-
lations amod, nsubj, root, compound, dobj, nummod whereas
Textual is more sensitive to det, prep, aux, cc, poss, advmod,
prt, relcl. As expected, Visual is more focused on grammatical
functions typically filled by semantically contentful words, while Tex-
tual distributes its attention more uniformly and attends relatively
more to purely grammatical functions.

It is worth noting, however, the relatively low omission scores for
verbs in the case of Visual. One might expect that the task of image

extend past the lower and upper quartile to 1.5× the interquartile range (i.e.
75th percentile - 25th percentile); the points are outliers.
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Figure 4.6: Distributions of log ratios of omission scores of LM to Textual per
POS (left) and dependency labels (right). Only labels which occur at least 1250
times are included.

prediction from descriptions requires general language understanding
and so high omission scores for all content words in general; however,
the results suggest that this setting is not optimal for learning useful
representations of verbs, which possibly leads to representations that
are too task-specific and not transferable across tasks.

Figure 4.6 shows a similar analysis contrasting LM with the Tex-
tual pathway of Imaginet. The first observation is that the range
of values of the log ratios is narrow, indicating that the differences
between these two networks regarding which grammatical categories
they are sensitive to is less pronounced than when comparing Visual
to Textual. While the size of the effect is weak, there also seems
to be a tendency for the Textual model to pay relatively more at-
tention to content and less to function words, compared to LM: it
may be that the Visual pathway pulls Textual in this direction
by sharing word embeddings with it.
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Most of our findings up to this point conform reasonably well to
prior expectations about effects that particular learning objectives
should have. This fact serves to validate our methods. In the next
section we go on to investigate less straightforward patterns.

4.4.3 Beyond Lexical Cues
Models that utilize the sequential structure of language have the ca-
pacity to interpret the same word type differently depending on the
context. The omission score distributions in Section 4.4.2 show that
in the case of Imaginet the pathways are differentially sensitive to
content vs. function words. In principle, this may be either just due
to purely lexical features or the model may actually learn to pay
more attention to the same word type in appropriate contexts. This
section investigates to what extent our models discriminate between
occurrences of a given word in different positions and grammatical
functions.

We fit four L2-penalized linear regression models which predict
the omission scores per token with the following predictor variables:

1. LR word: word type

2. LR +dep: word type, dependency label and their interaction

3. LR +pos: word type, position (binned as first, second,
third, middle, antepenult, penult, last) and their in-
teraction

4. LR full: word type, dependency label, position, word:dependency
interaction, word:position interaction
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Table 4.1: Proportion of variance in omission scores explained by linear regression.

word +pos +dep full
Sum 0.654 0.661 0.670 0.670
LM 0.358 0.586 0.415 0.601
Textual 0.364 0.703 0.451 0.715
Visual 0.490 0.506 0.515 0.523

We use the 5000-image portion of MSCOCO validation data for train-
ing and test. The captions contain about 260,000 words in total, of
which we use 100,000 to fit the regression models. We then use the
rest of the words to compute the proportion of variance explained
by the models. For comparison we also use the Sum model which
composes word embeddings via summation, and uses the same loss
function as Visual. This model is unable to encode information
about word order, and thus is a good baseline here as we investigate
the sensitivity of the networks to positional and structural cues.

Table 4.1 shows the proportion of variance R2 in omission scores
explained by the linear regression with the different predictors. The
raw R2 scores show that for the language models LM and Textual,
the word type predicts the omission-score to much smaller degree
compared to Visual. Moreover, adding information about either the
position or the dependency labels increases the explained variance for
all models. However, for the Textual and LM models the position
of the word adds considerable amount of information. This is not
surprising considering that the omission scores are measured with
respect to the final activation state, and given the fact that in a
language model the recent history is most important for accurate
prediction.

Figure 4.7 offers a different view of the data, showing the increase
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or decrease in R2 for the models relative to LR +pos to emphasise
the importance of syntactic structure beyond the position in the sen-
tence. Interestingly, for the Visual model, dependency labels are
more informative than linear position, hinting at the importance of
syntactic structure beyond linear order. There is a sizeable increase
in R2 between LR +pos and LR full in the case of Visual, sug-
gesting that the omission scores for Visual depend on the words’
grammatical function in sentences, even after controlling for word
identity and linear position. In contrast, adding additional informa-
tion on top of lexical features in the case of Sum increases the ex-
plained variance only slightly, which is most likely due to the unseen
words in the held out set.

Overall, when regressing on word identities, word position and
dependency labels, the Visual model’s omission scores are the hard-
est to predict of the four models. This suggests that Visual may
be encoding additional structural features not captured by these pre-
dictors. We will look more deeply into such potential features in the
following sections.

4.4.3.1 Sensitivity to grammatical function

In order to find out some of the specific syntactic configurations lead-
ing to an increase in R2 between the LR word and LR +dep pre-
dictors in the case of Visual, we next considered all word types with
occurrence counts of at least 100 and ranked them according to how
much better, on average, LR +dep predicted their omission scores
compared to LR word.

Figure 4.8 shows the per-dependency omission score distributions
for seven top-ranked words. There are clear and large differences in
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Figure 4.8: Distribution of omission scores per dependency label for the selected
word types.

how these words impact the network’s representation depending on
what grammatical function they fulfil. They all have large omission
scores when they occur as nsubj (nominal subject) or root, likely
due to the fact that these grammatical functions typically have a large
contribution to the complete meaning of a sentence. Conversely, all
have small omission scores when appearing as conj (conjunct): this
is probably because in this position they share their contribution
with the first, often more important, member of the conjunction, for
example in A cow and its baby eating grass.

4.4.3.2 Sensitivity to linear structure

As observed in Section 4.4.3, adding extra information about the posi-
tion of words explains more of the variance in the case of Visual and
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especially Textual and LM. Figure 4.9 shows the coefficients cor-
responding to the position variables in LR full. Since the omission
scores are measured at the end-of-sentence token, the expectation is
that for Textual and LM, as language models, the words appear-
ing closer to the end of the sentence would have a stronger effect
on the omission scores. This seems to be confirmed by the plot as
the coefficients for these two networks up until the antepenult are all
negative.

For the Visual model it is less clear what to expect: on the one
hand due to their chain structure, RNNs are better at keeping track
of short-distance rather than long-distance dependencies and thus we
can expect tokens in positions closer to the end of the sentence to be
more important. On the other hand, in English the information struc-
ture of a single sentence is expressed via linear ordering: the topic
of a sentence appears sentence-initially, and the comment follows.
In the context of other text types such as dialog or multi-sentence
narrative structure, we would expect comment to often be more im-
portant than topic as comment will often contain new information
in these cases. In our setting of image captions however, sentences
are not part of a larger discourse; it is sentence initial material that
typically contains the most important objects depicted in the image,
e.g. two zebras are grazing in tall grass on a savannah. Thus, for the
task of predicting features of the visual scene, it would be advanta-
geous to detect the topic of the sentence and up-weight its importance
in the final meaning representation. Figure 4.9 appears to support
this hypothesis and the network does learn to pay more attention to
words appearing sentence-initially. This effect seems to be to some
extent mixed with the recency bias of RNNs as perhaps indicated by
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the relatively high coefficient of the last position for Visual.

4.4.4 Lexical versus abstract contexts
We would like to further analyze the kinds of linguistic features that
the hidden dimensions of RNNs encode. Previous work (Karpathy
et al., 2016; Li et al., 2016d) has shown that in response to the task
the networks are trained for, individual dimensions in the hidden
layers of RNNs can become specialised in responding to certain types
of triggers, including the tokens or token types at each time step, as
well as the preceding context of each token in the input sentence.

Here we perform a further comparison between the models based
on the hypothesis that due to their different objectives, the activa-
tions of the dimensions of the last hidden layer of Visual are more
characterized by semantic relations within contexts, whereas the hid-
den dimensions in Textual and LM are more focused on extracting
syntactic patterns. In order to quantitatively test this hypothesis,
we measure the strength of association between activations of hidden
dimensions and either lexical (token n-grams) or structural (depen-
dency label n-grams) types of context.

For each pathway, we define Ai as a discrete random variable cor-
responding to a binned activation over time steps at hidden dimen-
sion i, and C as a discrete random variable indicating the context
(where C can be of type ‘word trigram’ or ‘dependency label bigram’,
for example). The strength of association between Ai and C can be
measured by their mutual information:

I(Ai;C) =
∑
a∈Ai

∑
c∈C

p(a, c) log

(
p(a, c)

p(a)p(c)

)
(4.13)
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Figure 4.10: Distributions of the mutual information scores for the three networks
and the six context types.

Similarly to Li et al. (2016d), the activation value distributions are
discretized into percentile bins per dimension, such that each bin
contains 5% of the marginal density. For context types, we used
unigrams, bigrams and trigrams of both dependency labels and words.
Figure 4.10 shows the distributions of the mutual information scores
for the three networks and the six context types. Note that the scores
are not easily comparable between context types, due the different
support of the distributions; they are, however, comparable across the
networks. The figure shows LM and Textual as being very similar,
while Visual exhibits a different distribution. We next compare the
models’ scores pairwise to pinpoint the nature of the differences.

We use the notation MILMC , MITC and MIVC to denote the median
mutual information score over all dimensions of LM, Textual and
Visual respectively, when considering context C. We then compute
log ratios log(MITC/MIVC) and log(MILMC /MITC) for all six context types
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Figure 4.11: Bootstrap distributions of log ratios of median mutual information
scores for word and dependency contexts. Left: Textual vs Visual; right: LM
vs Textual

C. In order to quantify variability we bootstrap this statistic with
5000 replicates. Figure 4.11 shows the resulting bootstrap distribu-
tions for uni-, bi-, and trigram contexts, in the word and dependency
conditions.

The clear pattern is that for Textual versus Visual, the log
ratios are much higher in the case of the dependency contexts, with
no overlap between the bootstrap distributions. Thus, in general, the
size of the relative difference between Textual and Visual median
mutual information score is much more pronounced for dependency
context types. This suggests that features that are encoded by the
hidden dimensions of the models are indeed different, and that the
features encoded by Textual are more associated with syntactic
constructions than in the case of Visual. In contrast, when com-
paring LM with Textual, the difference between context types is
much less pronounced, with distributions overlapping. Though the
difference is small, it goes in the direction of the dimensions of the
Textual model showing higher sensitivity towards dependency con-
texts.
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The mutual information scores can be used to pinpoint specific
dimensions of the hidden activation vectors which are strongly as-
sociated with a particular type of context. Table 4.2 lists for each
network the dimension with the highest mutual information score
with respect to the dependency trigram context type, together with
the top five contexts where these dimensions carry the highest value.
In spite of the quantitative difference between the networks discussed
above, the dimensions which come up top seem to be capturing some-
thing quite similar for the three networks: (a part of) a construction
with an animate root or subject modified by a participle or a preposi-
tional phrase, though this is somewhat less clean-cut for the Visual
pathway where only two out of five top context clearly conform to
this pattern. Other interesting templates can be found by visual
inspection of the contexts where high-scoring dimensions are active;
for example, dimension 324 of LM is high for word bigram contexts
including people preparing, gets ready, man preparing, woman prepar-
ing, teenager preparing.

4.5 Discussion
The goal of our paper is to propose novel methods for the analysis
of the encoding of linguistic knowledge in RNNs trained on language
tasks. We focused on developing quantitative methods to measure
the importance of different kinds of words for the performance of
such models. Furthermore, we proposed techniques to explore what
kinds of linguistic features the models learn to exploit beyond lexical
cues.

Using the Imaginet model as our case study, our analyses of
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Table 4.2: Dimensions most strongly associated with the dependency trigram
context type, and the top five contexts in which these dimensions have high values.

Network Dimension Examples
LM 511 cookie/pobj attached/acl to/prep

people/pobj sitting/acl in/prep
purses/pobj sitting/pcomp on/prep
and/cc talks/conj on/prep
desserts/pobj sitting/acl next/advmod

Textual 735 male/root on/prep a/det
person/nsubj rides/root a/det
man/root carrying/acl a/det
man/root on/prep a/det
person/root on/prep a/det

Visual 875 man/root riding/acl a/det
man/root wearing/acl a/det
is/aux wearing/conj a/det
a/det post/pobj next/advmod
one/nummod person/nsubj is/aux
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the hidden activation patterns show that the Visual model learns
an abstract representation of the information structure of a single
sentence in the language, and pays selective attention to lexical cat-
egories and grammatical functions that carry semantic information.
In contrast, the language model Textual is sensitive to features of
a more syntactic nature. We have also shown that each network con-
tains specialized units which are tuned to both lexical and structural
patterns that are useful for the task at hand.

4.5.1 Generalizing to other architectures
For other RNN architectures such as LSTMs and their bi-directional
variants, measuring the contribution of tokens to their predictions
(or the omission scores) can be straight-forwardly computed using
their hidden state at the last time step used for prediction. Further-
more, the technique can be applied in general to other architectures
which map variable-length linguistic expressions to the same fixed di-
mensional space and perform predictions based on these embeddings.
This includes tree-structured Recursive Neural Network models such
as the Tree-LSTM introduced in Tai et al. (2015), or the CNN ar-
chitecture of Kim (2014) for sentence classification. However, the
presented analysis and results regarding word positions can only be
meaningful for Recurrent Neural Networks as they compute their rep-
resentations sequentially and are not limited by fixed window sizes.

A limitation of the generalizability of our analysis is that in the
case of bi-directional architectures, the interpretation of the features
extracted by the RNNs that process the input tokens in the reversed
order might be hard from a linguistic point of view.
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4.5.2 Future directions
In future we would like to apply the techniques introduced in this
paper to analyze the encoding of linguistic form and function of re-
current neural models trained on different objectives, such as neural
machine translation systems (Sutskever et al., 2014) or the purely
distributional sentence embedding system of Kiros et al. (2015). A
number of recurrent neural models rely on a so-called attention mech-
anism, first introduced by Bahdanau et al. (2015) under the name of
soft alignment. In these networks attention is explicitly represented,
and it would be interesting to see how our method of discovering
implicit attention, the omission score, compares. For future work we
also propose to collect data where humans assess the importance of
each word in a sentence and explore the relationship between omis-
sion scores for various models and human annotations. Finally, one
of the benefits of understanding how linguistic form and function is
represented in RNNs is that it can provide insight into how to im-
prove systems. We plan to draw on lessons learned from our analyses
in order to develop models with better general-purpose sentence rep-
resentations.
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5
Imagination Improves Multimodal

Translation

Abstract We decompose multimodal translation into two sub-tasks:
learning to translate and learning visually grounded representations.
In a multitask learning framework, translations are learned in an
attention-based encoder-decoder, and grounded representations are
learned through image representation prediction. Our approach im-
proves translation performance compared to the state of the art on
the Multi30K dataset. Furthermore, it is equally effective if we train
the image prediction task on the external MS COCO dataset, and we
find improvements if we train the translation model on the external
News Commentary parallel text.
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This chapter is based on Elliott, D., & Kádár, Á. (2017, Novem-
ber). Imagination Improves Multimodal Translation. In Proceedings
of the Eighth International Joint Conference on Natural Language
Processing (Volume 1: Long Papers) (pp. 130-141).
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5.1 Introduction
Multimodal machine translation is the task of translating sentences
in context, such as images paired with a parallel text (Specia et al.,
2016a). This is an emerging task in the area of multilingual multi-
modal natural language processing. Progress on this task may prove
useful for translating the captions of the images illustrating online
news articles, and for multilingual closed captioning in international
television and cinema.

Initial efforts have not convincingly demonstrated that visual con-
text can improve translation quality. In the results of the First Multi-
modal Translation Shared Task, only three systems outperformed an
off-the-shelf text-only phrase-based machine translation model, and
the best performing system was equally effective with or without the
visual features (Specia et al., 2016a). There remains an open ques-
tion about how translation models should take advantage of visual
context.

We present a multitask learning model that decomposes multi-
modal translation into learning a translation model and learning vi-
sually grounded representations. This decomposition means that our
model can be trained over external datasets of parallel text or de-
scribed images, making it possible to take advantage of existing re-
sources. Figure 5.1 presents an overview of our model, Imagination,
in which source language representations are shared between tasks
through the Shared Encoder. The translation decoder is an attention-
based neural machine translation model (Bahdanau et al., 2015), and
the image prediction decoder is trained to predict a global feature vec-
tor of an image that is associated with a sentence (Chrupała et al.,

117



A girl eats apancake

Shared Encoder

Attention
Average

Pool

imaginet
Decoder

Image

Ein Mädchen

Translation Decoder

Figure 5.1: The Imagination model learns visually-grounded representations by
sharing the encoder network between the Translation Decoder and in the imag-
inet Decoder for image prediction.

2015, imaginet). This decomposition encourages grounded learning
in the shared encoder because the imaginet decoder is trained to
imagine the image associated with a sentence. It has been shown
that grounded representations are qualitatively different from their
text-only counterparts (Kádár et al., 2017) and correlate better with
human similarity judgements (Chrupała et al., 2015). We assess the
success of the grounded learning by evaluating the image prediction
model on an image–sentence ranking task to determine if the shared
representations are useful for image retrieval (Hodosh et al., 2013). In
contrast with most previous work, our model does not take images as
input at translation time, rather it learns grounded representations
in the shared encoder.

We evaluate Imagination on the Multi30K dataset (Elliott et al.,
2016) using a combination of in-domain and out-of-domain data. In
the in-domain experiments, we find that multitasking translation
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with image prediction is competitive with the state of the art. Our
model achieves 55.8 Meteor as a single model trained on multimodal
in-domain data, and 57.6 Meteor as an ensemble.

In the experiments with out-of-domain resources, we find that the
improvement in translation quality holds when training the imaginet
decoder on the MS COCO dataset of described images (Chen et al.,
2015a). Furthermore, if we significantly improve our text-only base-
line using out-of-domain parallel text from the News Commentary
corpus (Tiedemann, 2012), we still find improvements in translation
quality from the auxiliary image prediction task. Finally, we report
a state-of-the-art result of 59.3 Meteor on the Multi30K corpus when
ensembling models trained on in- and out-of-domain resources.

The main contributions of this paper are:

• We show how to apply multitask learning to multimodal trans-
lation. This makes it possible to train models for this task
using external resources alongside the expensive triple-aligned
source-target-image data.

• We decompose multimodal translation into two tasks: learning
to translate and learning grounded representations. We show
that each task can be trained on large-scale external resources,
e.g. parallel news text or images described in a single language.

• We present a model that achieves state of the art results with-
out using images as an input. Instead, our model learns visu-
ally grounded source language representations using an auxil-
iary image prediction objective. Our model does not need any
additional parameters to translate unseen sentences.
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5.2 Problem Formulation
Multimodal translation is the task of producing target language trans-
lation y, given the source language sentence x and additional context,
such as an image v (Specia et al., 2016a). Let x be a source language
sentence consisting of N tokens: x1, x2, . . ., xn and let y be a target
language sentence consisting of M tokens: y1, y2, . . ., ym. The train-
ing data consists of tuples D ∈ (x, y, v), where x is a description of
image v, and y is a translation of x.

Multimodal translation has previously been framed as minimising
the negative log-likelihood of a translation model that is additionally
conditioned on the image, i.e. J(θ) = −

∑
j log p(yj|y<j, x, v). Here,

we decompose the problem into learning to translate and learning
visually grounded representations. The decomposition is based on
sharing parameters θ between these two tasks, and learning task-
specific parameters ϕ. We learn the parameters in a multitask model
with shared parameters in the source language encoder. The trans-
lation model has task-specific parameters ϕt in the attention-based
decoder, which are optimized through the translation loss JT (θ, ϕt).
Grounded representations are learned through an image prediction
model with task-specific parameters ϕg in the image-prediction de-
coder by minimizing JG(θ, ϕg). The joint objective is given by mixing
the translation and image prediction tasks with the parameter w:

J(θ, ϕ) = wJT (θ, ϕ
t) + (1− w)JG(θ, ϕg) (5.1)

Our decomposition of the problem makes it straightforward to op-
timise this objective without paired tuples, e.g. where we have an
external dataset of described images Dimage ∈ (x, v) or an external
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parallel corpus Dtext ∈ (x, y).
We train our multitask model following the approach of Luong

et al. (2016). We define a primary task and an auxiliary task, and a
set of parameters θ to be shared between the tasks. A minibatch of
updates is performed for the primary task with probability w, and
for the auxiliary task with 1 − w. The primary task is trained until
convergence and weight w determines the frequency of parameter
updates for the auxiliary task.

5.3 Imagination Model

5.3.1 Shared Encoder
The encoder network of our model learns a representation of a se-
quence of N tokens x1...n in the source language with a bidirectional
recurrent neural network (Schuster & Paliwal, 1997). This representa-
tion is shared between the different tasks. Each token is represented
by a one-hot vector xi, which is mapped into an embedding ei through
a learned matrix E:

ei = xi · E (5.2)

A sentence is processed by a pair of recurrent neural networks, where
one captures the sequence left-to-right (forward), and the other cap-
tures the sequence right-to-left (backward). The initial state of the
encoder h−1 is a learned parameter:

−→
hi =

−−−→RNN(
−−→
hi−1, ei) (5.3)

←−
hi =

←−−−RNN(
←−−
hi−1, ei) (5.4)
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Each token in the source language input sequence is represented by
a concatenation of the forward and backward hidden state vectors:

hi = [
−→
hi ;
←−
hi ] (5.5)

5.3.2 Neural Machine Translation Decoder
The translation model decoder is an attention-based recurrent neural
network (Bahdanau et al., 2015). Tokens in the decoder are repre-
sented by a one-hot vector yj, which is mapped into an embedding
ej through a learned matrix Ey:

ej = yj · Ey (5.6)

The inputs to the decoder are the previously predicted token yj−1,
the previous decoder state dj−1, and a timestep-dependent context
vector cj calculated over the encoder hidden states:

dj = RNN(dj−1,yj−1, ej) (5.7)

The initial state of the decoder d-1 is a nonlinear transform of the
mean of the encoder states, where Winit is a learned parameter:

d-1 = tanh(Winit ·
1

N

N∑
i

hi) (5.8)
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The context vector cj is a weighted sum over the encoder hidden
states, where N denotes the length of the source sentence:

cj =
N∑
i=1

αjihi (5.9)

The αji values are the proportion of which the encoder hidden state
vectors h1...n contribute to the decoder hidden state when produc-
ing the jth token in the translation. They are computed by a feed-
forward neural network, where va, Wa and Ua are learned parame-
ters:

αji =
exp(eji)∑N
l=1 exp(eli)

(5.10)

eji = va · tanh(Wa · dj−1 +Ua · hi) (5.11)

From the hidden state dj the network predicts the conditional distri-
bution of the next token yj, given a target language embedding ej−1

of the previous token, the current hidden state dj, and the calculated
context vector cj . Note that at training time, yj−1 is the true ob-
served token; whereas for unseen data we use the inferred token ŷj−1

sampled from the output of the softmax:

p(yj|y<j, c) = softmax(tanh(ej−1 + dj + cj)) (5.12)

The translation model is trained to minimise the negative log
likelihood of predicting the target language output:

JNLL(θ, ϕ
t) = −

∑
j

log p(yj|y<j, x) (5.13)
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5.3.3 Imaginet Decoder
The image prediction decoder is trained to predict the visual feature
vector of the image associated with a sentence (Chrupała et al., 2015).
It encourages the shared encoder to learn grounded representations
for the source language.

A source language sentence is encoded using the Shared Encoder,
as described in Section 5.3.1. Then we transform the shared encoder
representation into a single vector by taking the mean pool over the
hidden state annotations, the same way we initialise the hidden state
of the translation decoder (Eqn. 5.8). This sentence representation
is the input to a feed-forward neural network that predicts the visual
feature vector v̂ associated with a sentence with parameters Wvis:

v̂ = tanh(Wvis ·
1

N

N∑
i

hi) (5.14)

This decoder is trained to predict the true image vector v with
a margin-based objective, parameterised by the minimum margin α,
and the cosine distance d(·, ·). A margin-based objective has previ-
ously been used in grounded representation learning (Vendrov et al.,
2016; Chrupała et al., 2017). The contrastive examples v′ are drawn
from the other instances in a minibatch:

JMAR(θ, ϕ
t) =

∑
v′ ̸=v

max{0, α− d(v̂,v)

+ d(v̂,v′)}
(5.15)
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Size Tokens Types Images

Multi30K: parallel text with images
En

31K
377K 10K

31K
De 368K 16K

MS COCO: external described images
En 414K 4.3M 24K 83K

News Commentary: external parallel text
En

240K
8.31M

17K
–

De 8.95M –

Table 5.1: The datasets used in our experiments.

5.4 Data
We evaluate our model using the benchmark Multi30K dataset (El-
liott et al., 2016), which is the largest collection of images paired
with sentences in multiple languages. This dataset contains 31,014
images paired with an English language sentence and a German lan-
guage translation: 29,000 instances are reserved for training, 1,014
for development, and 1,000 for evaluation.1

The English and German sentences are preprocessed by normal-
ising the punctuation, lowercasing and tokenizing the text using the
Moses toolkit. We additionally decompound the German text using
Zmorge Sennrich & Kunz (2014). This results in vocabulary sizes of
10,214 types for English and 16,022 for German.

1The Multi30K dataset also contains 155K independently collected descrip-
tions in German and English. In order to make our experiments more comparable
with previous work, we do not make use of this data.
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We also use two external datasets to evaluate our model: the MS
COCO dataset of English described images Chen et al. (2015a), and
the English-German News Commentary parallel corpus (Tiedemann,
2012). When we perform experiments with the News Commentary
corpus, we first calculate a 17,597 sub-word vocabulary using Senten-
cePiece (Schuster & Nakajima, 2012) over the concatentation of the
Multi30K and News Commentary datasets. This gives us a shared
vocabulary for the external data that reduces the number of out-of-
vocabulary tokens.

Images are represented by 2048D vectors extracted from the
`pool5/7x7_s1' layer of the GoogLeNet v3 CNN (Szegedy et al.,
2015b).

5.5 Experiments
We evaluate our multitasking approach with in- and out-of-domain
resources. We start by reporting results of models trained using only
the Multi30K dataset. We also report the results of training the imag-
inet decoder with the COCO dataset. Finally, we report results on
incorporating the external News Commentary parallel text into our
model. Throughout, we report performance of the En→De transla-
tion using Meteor (Denkowski & Lavie, 2014) and BLEU (Papineni
et al., 2002) against lowercased tokenized references.

5.5.1 Hyperparameters
The encoder is a 1000D Gated Recurrent Unit bidirectional recurrent
neural network (Cho et al., 2014b, GRU) with 620D embeddings. We
share all of the encoder parameters between the primary and auxil-
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iary task. The translation decoder is a 1000D GRU recurrent neural
network, with a 2000D context vector over the encoder states, and
620D word embeddings (Sennrich et al., 2017). The Imaginet decoder
is a single-layer feed-forward network, where we learn the parameters
Wvis ∈ R2048x2000 to predict the true image vector with α = 0.1 for
the Imaginet objective (Equation 5.15). The models are trained us-
ing the Adam optimiser with the default hyperparameters (Kingma
& Ba, 2014) in minibatches of 80 instances. The translation task is
defined as the primary task and convergence is reached when BLEU
has not increased for five epochs on the validation data. Gradients
are clipped when their norm exceeds 1.0. Dropout is set to 0.2 for
the embeddings and the recurrent connections in both tasks (Gal
& Ghahramani, 2016). Translations are decoded using beam search
with 12 hypotheses.

5.5.2 In-domain experiments
We start by presenting the results of our multitask model trained
using only the Multi30K dataset. We compare against state-of-the-
art approaches and text-only baselines. Moses is the phrase-based
machine translation model (Koehn et al., 2007) reported in Specia
et al. (2016a). NMT is a text-only neural machine translation model.
Calixto et al. (2017) is a double-attention model over the source lan-
guage and the image. Calixto & Liu (2017a) is a multimodal trans-
lation model that conditions the decoder on semantic image vector
extracted from the VGG-19 CNN. Hitschler et al. (2016) uses visual
features in a target-side retrieval model for translation. Toyama et al.
(2016) is most comparable to our approach: it is a multimodal varia-
tional NMT model that infers latent variables to represent the source
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Meteor BLEU

NMT 54.0 ± 0.6 35.5 ± 0.8
Calixto et al. (2017) 55.0 36.5
Calixto & Liu (2017a) 55.1 37.3
Imagination 55.8 ± 0.4 36.8 ± 0.8
Toyama et al. (2016) 56.0 36.5
Hitschler et al. (2016) 56.1 34.3
Moses 56.9 36.9

Table 5.2: En→De translation results on the Multi30K dataset. Our Imagination
model is competitive with the state of the art when it is trained on in-domain data.
We report the mean and standard deviation of three random initialisations.

language semantics from the image and linguistic data.
Table 5.2 shows the results of this experiment. We can see that the

combination of the attention-based translation model and the image
prediction model is a 1.8 Meteor point improvement over the NMT
baseline, but it is 1.1 Meteor points worse than the strong Moses base-
line. Our approach is competitive with previous approaches that use
visual features as inputs to the decoder and the target-side reranking
model. It also competitive with Toyama et al. (2016), which also only
uses images for training. These results confirm that our multitasking
approach uses the image prediction task to improve the encoder of
the translation model.
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Meteor BLEU

Imagination 55.8 ± 0.4 36.8 ± 0.8
Imagination (COCO) 55.6 ± 0.5 36.4 ± 1.2

Table 5.3: Translation results when using out-of-domain described images. Our
approach is still effective when the image prediction model is trained over the
COCO dataset.

Meteor BLEU

NMT 52.8 ± 0.6 33.4 ± 0.6
+ NC 56.7 ± 0.3 37.2 ± 0.7
+ Imagination 56.7 ± 0.1 37.4 ± 0.3
+ Imagination (COCO) 57.1 ± 0.2 37.8 ± 0.7
Calixto et al. (2017) 56.8 39.0

Table 5.4: Translation results with out-of-domain parallel text and described im-
ages. We find further improvements when we multitask with the News Commen-
tary (NC) and COCO datasets.

5.5.3 External described image data
Recall from Section 5.2 that we are interested in scenarios where
x, y, and v are drawn from different sources. We now experiment
with separating the translation data from the described image data
using Dimage: MS COCO dataset of 83K described images2 and Dtext:
Multi30K parallel text.

2Due to differences in the vocabularies of the respective datasets, we do not
train on examples where more than 10% of the tokens are out-of-vocabulary in
the Multi30K dataset.
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Parallel text Described images
Multi30K News Commentary Multi30K COCO Meteor BLEU

Zm
or

ge ✓ 56.2 37.8

✓ ✓ 57.6 39.0

Su
b-

wo
rd ✓ 54.4 35.0

✓ ✓ 58.6 39.4
✓ ✓ ✓ 59.0 39.5
✓ ✓ ✓ 59.3 40.2

Table 5.5: Ensemble decoding results. Zmorge denotes models trained with de-
compounded German words; Sub-word denotes joint SentencePiece word splitting
(see Section 6.4 for more details).

Table 5.3 shows the results of this experiment. We find that there
is no significant difference between training the imaginet decoder on
in-domain (Multi30K) or out-of-domain data (COCO). This result
confirms that we can separate the parallel text from the described
images.

5.5.4 External parallel text data
We now experiment with training our model on a combination of the
Multi30K and the News Commentary English-German data. In these
experiments, we concatenate the Multi30K and News Commentary
datasets into a single Dtext training dataset, similar to Freitag & Al-
Onaizan (2016). We compare our model against Calixto et al. (2017),
who pre-train their model on the WMT’15 English-German parallel
text and back-translate (Sennrich et al., 2016) additional sentences
from the bilingual independent descriptions in the Multi30K dataset
(Footnote 2).
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Table 5.4 presents the results. The text-only NMT model using
sub-words is 1.2 Meteor points lower than decompounding the Ger-
man text. Nevertheless, the model trained over a concatenation of
the parallel texts is a 2.7 Meteor point improvement over this baseline
(+ NC) and matches the performance of our Multitasking model that
uses only in-domain data (Section 5.5.2). We do not see an additive
improvement for the multitasking model with the concatenated par-
allel text and the in-domain data (+ Imagination) using a training
objective interpolation of w = 0.89 (the ratio of the training dataset
sizes). This may be because we are essentially learning a translation
model and the updates from the imaginet decoder are forgotten.
Therefore, we experiment with multitasking the concatenated paral-
lel text and the COCO dataset (w = 0.5). We find that balancing the
datasets improves over the concatenated text model by 0.4 Meteor
(+ Imagination (COCO)). Our multitasking approach improves upon
Calixto et al. by 0.3 Meteor points. Our model can be trained in 48
hours using 240K parallel sentences and 414K described images from
out-of-domain datasets. Furthermore, recall that our model does not
use images as an input for translating unseen data, which results in
6.2% fewer parameters compared to using the 2048D Inception-V3
visual features to initialise the hidden state of the decoder.

5.5.5 Ensemble results
Table 5.5 presents the results of ensembling different randomly ini-
tialised models. We achieve a start-of-the-art result of 57.6 Meteor
for a model trained on only in-domain data. The improvements are
more pronounced for the models trained using sub-words and out-
of-domain data. An ensemble of baselines trained on sub-words is
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Source: two children on their stomachs lay on the ground under a
pipe

NMT: zwei kinder auf ihren gesichtern liegen unter dem boden
auf dem boden

Ours: zwei kinder liegen bäuchlings auf dem boden unter einer
schaukel

Source: small dog in costume stands on hind legs to reach dangling
flowers

NMT: ein kleiner hund steht auf dem hinterbeinen und läuft ,
nach links von blumen zu sehen

Ours: ein kleiner hund in einem kostüm steht auf den hinter-
beinen , um die blumen zu erreichen

Source: a bird flies across the water
NMT: ein vogel fliegt über das wasser
Ours: ein vogel fliegt durch das wasser

Table 5.6: Examples where our model improves or worsens the translation com-
pared to the NMT baseline. Top: NMT translates the wrong body part; both mod-
els skip “pipe”. Middle: NMT incorrectly translates the verb and misses several
nouns. Bottom: Our model incorrectly translates the preposition.

initially worse than an ensemble trained on Zmorge decompounded
words. However, we always see an improvement from ensembling
models trained on in- and out-of-domain data. Our best ensemble
is trained on Multi30K parallel text, the News Commentary parallel
text, and the COCO descriptions to set a new state-of-the-art result
of 59.3 Meteor.

5.5.6 Multi30K 2017 results
We also evaluate our approach against 16 submissions to the WMT
Shared Task on Multimodal Translation and Multilingual Image De-
scription (Elliott & Kádár, 2017). This shared task features a new
evaluation dataset: Multi30K Test 2017 (Elliott & Kádár, 2017),
which contains 1,000 new evaluation images. The shared task submis-
sions are evaluated with Meteor and human direct assessment (Gra-
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ham et al., 2017). We submitted two systems, based on whether
they used only the Multi30K dataset (constrained) or used addi-
tional external resources (unconstrained). Our constrained submis-
sion is an ensemble of three Imagination models trained over only
the Multi30K training data. This achieves a Meteor score of 51.2,
and a joint 3rd place ranking according to human assessment. Our
unconstrained submission is an ensemble of three Imagination mod-
els trained with the Multi30K, News Commentary, and MS COCO
datasets. It achieves a Meteor score of 53.5, and 2nd place in the
human assessment.

5.5.7 Qualitative examples
Table 5.6 shows examples of where the multitasking model improves
or worsens translation performance compared to the baseline model3.
The first example shows that the baseline model makes a significant
error in translating the pose of the children, translating “on their
stomachs” as “on their faces”). The middle example demonstrates
that the baseline model translates the dog as walking (“läuft”) and
then makes grammatical and sense errors after the clause marker.
Both models neglect to translate the word “dangling”, which is a
low-frequency word in the training data. There are instances where
the baseline produces better translations than the multitask model:
In the bottom example, our model translates a bird flying through
the water (“durch”) instead of “over” the water.

3We used MT-ComparEval (Klejch et al., 2015)
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5.6 Discussion

5.6.1 Does the model learn grounded representa-
tions?

A natural question to ask if whether the multitask model is actu-
ally learning representations that are relevant for the images. We
answer this question by evaluating the Imaginet decoder in an image–
sentence ranking task. Here the input is a source language sentence,
from which we predict its image vector v̂. The predicted vector v̂

can be compared against the true image vectors v in the evaluation
data using the cosine distance to produce a ranked order of the im-
ages. Our model returns a median rank of 11.0 for the true image
compared to the predicted image vector. Figure 5.2 shows examples
of the nearest neighbours of the images predicted by our multitask
model. We can see that the combination of the multitask source lan-
guage representations and imaginet decoder leads to the prediction
of relevant images. This confirms that the shared encoder is indeed
learning visually grounded representations.

5.6.2 The effect of visual feature vectors
We now study the effect of varying the Convolutional Neural Net-
work used to extract the visual features used in the Imaginet decoder.
It has previously been shown that the choice of visual features can
affect the performance of vision and language models (Jabri et al.,
2016; Kiela et al., 2016). We compare the effect of training the imag-
inet decoder to predict different types of image features, namely:
4096D features extracted from the ‘fc7‘’ layer of the VGG-19 model
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(a) Nearest neighbours for “a native woman is working on a craft project .”

(b) Nearest neighbours for “there is a cafe on the street corner with an oval paint-
ing on the side of the building .”

Figure 5.2: We can interpret the imaginet Decoder by visualising the predictions
made by our model.

(Simonyan & Zisserman, 2015), 2048D features extracted from the
‘pool5/7x7_s1’ layer of InceptionNet V3 (Szegedy et al., 2015b), and
2048D features extracted from ‘avg_pool‘ layer of ResNet-50 (He
et al., 2016). Table 5.7 shows the results of this experiment. There is
a clear difference between predicting the 2048D vectors (Inception-V3
and ResNet-50) compared to the 4096D vector from VGG-19). This
difference is reflected in both the translation Meteor score and the
Median rank of the images in the validation dataset. This is likely
because it is easier to learn the parameters of the image prediction
model that has fewer parameters (8.192 million for VGG-19 vs. 4.096
million for Inception-V3 and ResNet-50). However, it is not clear why
there is such a pronounced difference between the Inception-V3 and
ResNet-50 models4.

4We used pre-trained CNNs (https://github.com/fchollet/
deep-learning-models), which claim equal ILSVRC object recognition
performance for both models: 7.8% top-5 error with a single-model and
single-crop.
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Meteor Median Rank

Inception-V3 56.0 ± 0.1 11.0 ± 0.0
Resnet-50 54.7 ± 0.4 11.7 ± 0.5
VGG-19 53.6 ± 1.8 13.0 ± 0.0

Table 5.7: The type of visual features predicted by the imaginet Decoder has a
strong impact on the Multitask model performance.

5.7 Related work
Initial work on multimodal translation used semantic or spatially-
preserving image features as inputs to a translation model. Semantic
image features are typically extracted from the final layer of a pre-
trained object recognition CNN, e.g. ‘pool5/7x7_s1’ in GoogLeNet
(Szegedy et al., 2015b). This type of vector has been used as input
to the encoder Elliott et al. (2015); Huang et al. (2016), the decoder
(Libovický et al., 2016), or as features in a phrase-based translation
model (Shah et al., 2016; Hitschler et al., 2016). Spatially-preserving
image features are extracted from deeper inside a CNN, where the
position of a feature is related to its position in the image. These fea-
tures have been used in “double-attention models”, which calculate
independent context vectors for the source language and a convo-
lutional image features (Calixto et al., 2016; Caglayan et al., 2016;
Calixto et al., 2017). We use an attention-based translation model
but our multitask model does not use images for translation.

More related to our work is an extension of Variational Neural
Machine Translation to infer latent variables to explicitly model the
semantics of source sentences from visual and linguistic information
(Toyama et al., 2016). They report improvements on the Multi30K
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data set but their model needs additional parameters in the “neu-
ral inferrer” modules. In our model, the grounded semantics are
represented implicitly in the shared encoder. They assume Source-
Target-Image training data, whereas our approach achieves equally
good results if we train on separate Source-Image and Source-Target
datasets. Saha et al. (2016) study cross-lingual image description
where the task is to generate a sentence in language L1 given the
image, using only Image-L2 and L1-L2 training corpora. They pro-
pose a Correlational Encoder-Decoder to model the Image-L2 and
L1-L2 data, which learns correlated representations for paired Image-
L2 data and decodes L1 from the joint representation. Similar to
our work, the encoder is trained by minimizing two loss functions:
the Image-L2 correlation loss, and the L1 decoding cross-entropy loss.
Nakayama & Nishida (2017) consider a zero-resource problem, where
the task is to translate from L1 to L2 with only Image-L1 and Image-
L2 corpora. Their model embeds the image, L1, and L2 in a joint
multimodal space learned by minimizing a multi-task ranking loss
between both pairs of examples. In this paper, we focus on enriching
source language representations with visual information instead of
zero-resource learning.

Multitask Learning improves the generalisability of a model by re-
quiring it to be useful for more than one task (Caruana, 1997). This
approach has recently been used to improve the performance of sen-
tence compression using eye gaze as an auxiliary task (Klerke et al.,
2016), and to improve shallow parsing accuracy through the auxil-
iary task of predicting keystrokes in an out-of-domain corpus (Plank,
2016). More recently, Bingel & Søgaard (2017) analysed the bene-
ficial relationships between primary and auxiliary sequential predic-
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tion tasks. In the translation literature, multitask learning has been
used to learn a one-to-many languages translation model (Dong et al.,
2015), a multi-lingual translation model with a single attention mech-
anism shared across multiple languages (Firat et al., 2016), and in
multitask sequence-to-sequence learning without an attention-based
decoder (Luong et al., 2016). We explore the benefits of grounded
learning in the specific case of multimodal translation. We combine
sequence prediction with continuous (image) vector prediction, com-
pared to previous work which multitasks different sequence prediction
tasks.

Visual representation prediction has been studied using static im-
ages or videos. Lin & Parikh (2015) use a conditional random field
to imagine the composition of a clip-art scene for visual paraphrasing
and fill-in-the-blank tasks. Chrupała et al. (2015) predict the image
vector associated with a sentence using an L2 loss; they found this im-
proves multi-modal word similarity compared to text-only baselines.
Gelderloos & Chrupała (2016) predict the image vector associated
with a sequence of phonemes using a max-margin loss, similar to
our image prediction objective. Collell et al. (2017) learn to predict
the visual feature vector associated with a word for word similarity
and relatedness tasks. As a video reconstruction problem, Srivastava
et al. (2015) propose an LSTM Autoencoder to predict video frames
as a reconstruction task or as a future prediction task. Pasunuru &
Bansal (2017) propose a multitask model for video description that
combines unsupervised video reconstruction, lexical entailment, and
video description. They find improvements from using out-of-domain
resources for entailment and video prediction, similar to the improve-
ments we find from using out-of-domain parallel text and described
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images.

5.8 Conclusion
We decompose multimodal translation into two sub-problems: learn-
ing to translate and learning visually grounded representations. In a
multitask learning framework, we show how these sub-problems can
be addressed by sharing an encoder between a translation model and
an image prediction model5. Our approach achieves state-of-the-art
results on the Multi30K dataset without using images for transla-
tion. We show that training on separate parallel text and described
image datasets does not hurt performance, encouraging future re-
search on multitasking with diverse sources of data. Furthermore, we
still find improvements from image prediction when we improve our
text-only baseline with the out-of-domain parallel text. Future work
includes adapting our decomposition to other NLP tasks that may
benefit from out-of-domain resources, such as semantic role labelling,
dependency parsing, and question-answering; exploring methods for
inputting the (predicted) image into the translation model; experi-
menting with different image prediction architectures; multitasking
different translation languages into a single shared encoder; and mul-
titasking in both the encoder and decoder(s).
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6
Lessons learned in multilingual

grounded language learning

Abstract Recent work has shown how to learn better visual-semantic
embeddings by leveraging image descriptions in more than one lan-
guage. Here, we investigate in detail which conditions affect the per-
formance of this type of grounded language learning model. We show
that multilingual training improves over bilingual training, and that
low-resource languages benefit from training with higher-resource lan-
guages. We demonstrate that a multilingual model can be trained
equally well on either translations or comparable sentence pairs, and
that annotating the same set of images in multiple language enables
further improvements via an additional caption-caption ranking ob-
jective.
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This chapter is based on Kádár, Á., Elliott, D., Côté, M. A.,
Chrupała, G., & Alishahi, A. (2018). Lessons Learned in Multilingual
Grounded Language Learning. In Proceedings of the 22nd Conference
on Computational Natural Language Learning (pp. 402-412).
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6.1 Introduction
Multimodal representation learning is largely motivated by evidence
of perceptual grounding in human concept acquisition and representa-
tion (Barsalou et al., 2003). It has been shown that visually grounded
word and sentence-representations (Kiela et al., 2014; Baroni, 2016;
Elliott & Kádár, 2017; Kiela et al., 2018; Yoo et al., 2017) improve
performance on the downstream tasks of paraphrase identification, se-
mantic entailment, and multimodal machine translation (Dolan et al.,
2004; Marelli et al., 2014b; Specia et al., 2016a). Multilingual sen-
tence representations have also been successfully applied to many-
languages-to-one character-level machine translation (Chung et al.,
2016) and multilingual dependency parsing (Ammar et al., 2016).

Recently, Gella et al. (2017) proposed to learn both bilingual and
multimodal sentence representations using images paired with cap-
tions independently collected in English and German. Their results
show that bilingual training improves image-sentence ranking perfor-
mance over a monolingual baseline, and it improves performance on
semantic textual similarity benchmarks Agirre et al. (2014, 2015).
These findings suggest that it may be beneficial to consider another
language as another modality in a monolingual grounded language
learning model. In the grounded learning scenario, descriptions of an
image in multiple languages can be considered as multiple views of the
same or closely related data. These additional views can help over-
come the problems of data sparsity, and have practical implications
for efficiently collecting image-text datasets in different languages.
In real-life applications, many tasks and domains can involve code
switching (Barman et al., 2014), which is easier to deal with using a

∗Work carried out at the University of Edinburgh.

143



En: A group of people are eating
noodles.
De: Eine Gruppe von Leuten isst
Nudeln.
Fr: Un groupe de gens mangent
des nouilles.
Cs: Skupina lidí jedí nudle.

(a) A translation tuple

En: Several asian people eating
around a table.
De: Drei Männer und zwei
Frauen südostasiatischen Ausse-
hens sitzen, aus Schälchen essend,
an einem schwarzen, Tisch, auf
dem sich u.a. auch Pappbecher
und eine Tasche befinden, im Hin-
tergrund sind weitere Personen
und Tische.1

(b) A comparable pair

Figure 6.1: An example taken from the Translation and Comparable portions of
the Multi30K dataset. The translation portion (a) contains professional translations
of the English captions into German, French, and Czech. The comparable portion
(b) consists of five independently crowdsourced English and German descriptions,
given only the image. Note that the sentences in (b) convey different information
from the English–German translation pair in (a).
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multilingual model. Furthermore, it is more convenient to maintain
a single multilingual system than one system for each considered lan-
guage. However, there is a need for a systematic exploration of the
conditions under which it is useful to add additional views of the
data. We investigate the impact of the following conditions on the
performance of a multilingual grounded language learning model in
sentence and image retrieval tasks:

Additional languages. Multilingual models have not been explored
yet in a multimodal setting. We investigate the contribution of
adding more than one language by performing bilingual exper-
iments on English and German (Section 6.5) as well as adding
French and Czech captioned images (Section 6.6).

Data alignment: We assess the performance of a multilingual mod-
els trained using either captions that are translations of each
other, or captions that are independently collected in different
languages for the same set of images. The two scenarios are
illustrated in Figure 6.1. Additionally we consider the setup
when non-overlapping sets of images and their captions are col-
lected in different languages. Such disjoint settings have been
explored in pivot-based multimodal representation learning (Fu-
naki & Nakayama, 2015; Rajendran et al., 2016) or zero-shot
multi-modal machine translation (Nakayama & Nishida, 2017).
We compare translated vs. independently collected captions in
Sections 6.5.2 and 6.6.1, and overlapping vs. disjoint images in
Section 6.5.3.

High-to-low resource transfer: In Section 6.6.2 we investigate whether
low-resource languages benefit from jointly training on larger
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data sets from higher-resource languages. This type of transfer
has previously been shown to be effective in machine transla-
tion (e.g., Zoph et al., 2016).

Training objective: In addition to learning to map images to sen-
tences, we study the effect of also learning relationships between
captions of the same image in different languages (Gella et al.,
2017). We assess the contribution of such a caption–caption
ranking objective throughout our experiments.

Our results show that multilingual joint training improves upon bilin-
gual joint training, and that grounded sentence representations for
a low-resource language can be substantially improved with data
from different high-resource languages. Our results suggest that
independently-collected captions are more useful than translated cap-
tions, for the task of learning multilingual multimodal sentence em-
beddings. Finally, we recommend to collect captions for the same set
of images in multiple languages, due to the benefits of the additional
caption–caption ranking objective function.

6.2 Related work
Learning visually grounded word-representations has been an active
area of research in the fields of multi-modal semantics and cross-
situational word-learning. Such perceptually-grounded word repre-
sentations have been shown to lead to higher correlation with hu-
man judgements on word-similarity benchmarks such as WordSim353

1Gloss: Three men and two women with a South-East Asian appearance eat
out of bowls at a black table, on which there are, among other things, paper cups
and a bag; in the background there are other people and tables.
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(Finkelstein et al., 2001) or SimLex999 (Hill et al., 2015) compared
to uni-modal representations (Kádár et al., 2015a; Bruni et al., 2014;
Kiela & Bottou, 2014).

Grounded representations of sentences that are learned from image–
caption data sets also improve performance on a number of sentence-
level tasks (Kiela et al., 2018; Yoo et al., 2017) when used as ad-
ditional features to skip-thought vectors (Kiros et al., 2015). The
model architectures used for these studies have the same overall struc-
ture as our model and coincide with image–sentence retrieval systems
(Kiros et al., 2014; Karpathy & Fei-Fei, 2015): a pre-trained CNN is
fixed or fine-tuned as image feature extractor, followed by a learned
transformation, while sentence representations are learned by a ran-
domly initialized recurrent neural network. These models are trained
to push the true image–caption pairs closer together, and the false
image–caption pairs further from each other, in a joint embedding
space.

In addition to learning grounded representations for image-sentence
ranking, joint vision and language systems have been proposed to
solve a wide range of tasks across modalities such as image caption-
ing (Mao et al., 2014a; Vinyals et al., 2015b; Xu et al., 2015), visual
question answering (Antol et al., 2015; Fukui et al., 2016; Jabri et al.,
2016), text-to-image synthesis (Reed et al., 2016) and multimodal ma-
chine translation (Libovicky & Helcl, 2017; Elliott & Kádár, 2017).

Our work is also closely related to multilingual joint representa-
tion learning. In this scenario, a single model is trained to solve a task
across multiple languages. Ammar et al. (2016) train a multilingual
dependency parser on the Universal Dependencies treebank (Nivre
et al., 2015) and show that on average the single multilingual model
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outperforms the monolingual baselines. Johnson et al. (2017) present
a zero-shot neural machine translation model that is jointly trained
on language pairs A ↔ B and B ↔ C and show that the model is
capable of performing well on the unseen language pair A↔ C. Lee
et al. (2017) find that jointly training a many-languages-to-one trans-
lation model on unsegmented character sequences improves BLEU
scores compared to monolingual training. They also show evidence
that the model can handle intra-sentence code-switching. Peters et al.
(2017) train a multilingual sequence-to-sequence translation architec-
ture on grapheme-to-phoneme conversion using more than 300 lan-
guages. They report better performance when adding multiple lan-
guages, even those which are not present in the test data. Finally,
massively multilingual language representations trained on over 900
languages have been shown to resemble language families (Östling
& Tiedemann, 2017) and can successfully predict linguistic typology
features (Malaviya et al., 2017).

In the vision and language domain, multilingual-multimodal sen-
tence representation learning has been limited so far to two languages.
The joint training of models on English and German data has been
shown to outperform monolingual baselines on image-sentence rank-
ing and semantic textual similarity tasks (Gella et al., 2017; Calixto
& Liu, 2017b). Recently (Harwath et al., 2018) also showed the ben-
efit of joint bilingual training in the domain of speech-to-image and
image-to-speech retrieval using English and Hindi data.
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Require: p: task switching probability.
Dc2i: datasets D1 . . . Dk of image-caption pairs

< c, i > for all k languages.
Dc2c: data set of all possible caption pairs

< ca, cb > for all k languages.
ϕ(c, θϕ): caption encoder
ψ(i, θϕ): image encoder

while not stopping criterion do
T ∼ Bern(p)
if T = 1 then

Dn ∼ Dc2i
< c, i >∼ Dn

a← ϕ(c, θϕ)
b← ψ(i, θψ)

else
< ca, cb >∼ Dc2c

a← ϕ(ca, θϕ)
b← ϕ(cb, θϕ)

end if
[θϕ; θψ]← SGD(∇[θϕ;θψ ]J (a,b))

end while
Figure 6.2: Pseudo-code of the training procedure used to train our multilingual
multi-task model.
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6.3 Multilingual grounded learning
We train a standard model of grounded language learning which
projects images and their textual descriptions into the same space
(Kiros et al., 2014; Karpathy & Fei-Fei, 2015). The training procedure
is illustrated by the pseudo-code in Figure 6.2. Images i are encoded
by a fixed pre-trained CNN followed by a learned affine transforma-
tion ψ(i, θψ), and captions c are encoded by a randomly initialized
RNN ϕ(c, θϕ). The model learns to minimize the distance between
pairs <a, b> using a max-of-hinges ranking loss (Faghri et al., 2018):

J (a, b) = max
<â,b>

[max(0, α− s(a, b) + s(â, b))] +

max
<a,b̂>

[max(0, α− s(a, b) + s(a, b̂))]

where < a, b > are the true pairs, and < a, b̂ > and < â, b > are all
possible contrastive pairs in the mini-batch. The pairs either consists
of image-caption pairs < i, c >, where the model solves a caption-
image c2i ranking task, or pairs of captions in multiple languages
belonging to the same image < ca, cb >, where the model solves a
caption-caption c2c ranking task (Gella et al., 2017). Our monolin-
gual models are trained to minimize the caption-image ranking ob-
jective c2i on the training set. The multilingual models are trained
to minimize the ranking loss for the set of all languages L in the
collection: at each iteration the model is either updated for the c2i
objective or the caption-caption c2c objective given either < cl, i >

or a < cka, c
m
b > pair in languages l, k,m, . . . ∈ L. All models are

trained by first selecting a task, either c2i or c2c. In the c2i case, a
language is sampled at random followed by sampling a random batch;
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in the c2c case, all possible < ca, cb > pairs across all languages are
treated as a single data set. All of the model parameters are shared
across all tasks and languages.

Implementation. We build our model on the PyTorch implemen-
tation2 of the VSE++ model (Faghri et al., 2018). Images are rep-
resented by the 2048 dimensional average-pool features extracted
from the ResNet50 architecture (He et al., 2016) trained on Ima-
geNet (Deng et al., 2009); this is followed by a trained linear layer
WI ∈ R2048×1024. Other implementation details follow (Faghri et al.,
2018): sentences are represented as the final hidden state of a GRU
(Chung et al., 2014) with 1024 units and 300 dimensional word-
embeddings trained from scratch. We use a single word embedding
matrix containing the union of all words in all considered languages.
The similarity function s in the ranking loss is cosine similarity. We ℓ2
normalize both the caption and image representations. The model is
trained with the Adam optimizer (Kingma & Ba, 2014) using default
parameters and learning-rate of 2e-4. We train the model with an
early stopping criterion, which is to maximise the sum of the image–
sentence recall scores R@1, R@5, R@10 on the validation set with
patience of 10 evaluations. In the monolingual setting the stopping
criterion is evaluated at the end of each epoch, whereas in the mul-
tilingual setup it is evaluated every 500 iterations. The probability
of switching between the c2i and c2c tasks is set to 0.5. Batches
from all data sets are sampled by shuffling the full dataset, going
through each batch and re-shuffling when exhausted. The sentence-
pair dataset used to train the c2c ranking model for ℓ languages is

2Code to reproduce our results is available at
https://github.com/kadarakos/mulisera.
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En De Fr Cz

En 1.0 0.04 0.06 0.02
De – 1.0 0.03 0.01
Fr – – 1.0 0.01
Cz – – – 1.0

Table 6.1: Vocabulary overlap as measured by the Jaccard coefficient between the
different languages on the translation portion of the Multi30K dataset.

generated as follows. For a given image i, a set of languages 1 · · · ℓ,
and a set of captions Ci

1, . . . , C
i
ℓ associated with an image i, we gener-

ate the set of all possible combinations of size 2 from caption sets Ci

and add the Cartesian product between all resulting pairs Ci
m × Ci

n

in Ci to the training set.

6.4 Experimental setup
Datasets. We train and evaluate our models on the translation
and comparable portions of the Multi30K dataset (Elliott et al., 2016,
2017). The translation portion (a low-resource dataset) contains 29K
images, each described in one English caption with German, French,
and Czech translations. The comparable portion (a higher-resource
dataset) contains the same 29K images paired with five English and
five German descriptions collected independently. Figure 6.1 presents
an example of the translation and comparable portions of the data.
We used the preprocessed version of the dataset, in which the text is
lowercased, punctuation is normalized, and the text is tokenized3. To

3https://github.com/multi30k/dataset
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reduce the vocabulary size of the joint models, we replace all words
occurring fewer than four times with a special “UNK” symbol. Ta-
ble 6.1 shows the overlap between the vocabularies of the translation
portion of the Multi30K dataset. The total number of tokens across
all four languages is 17,571, and taking the union of the tokens in
these four languages results in vocabulary of 16,553 tokens – a 6% re-
duction in vocabulary size. On the comparable portion of the dataset,
the total vocabulary between English and German contains 18,337 to-
kens, with a union of 17,667, which is a 4% reduction in vocabulary
size.

Evaluation. We evaluate our models on the 1K images of the 2016
test set of Multi30K either using the 5K captions from the comparable
data or the 1K translation pairs. We evaluate on image-to-text (I→
T) and text-to-image (T→ I) retrieval tasks. For most experiments
we report Recall at 1 (R@1), 5 (R@5) and 10 (R@10) scores averaged
over 10 randomly initialised models. However, in Section 6.6 we only
report R@10 due to space limitations and because it has less variance
than R@1 or R@5.

6.5 Bilingual Experiments

6.5.1 Reproducing Gella et al. (2017)
We start by attempting to reproduce the findings of Gella et al. (2017).
In these experiments we train our multi-task learning model on the
comparable portion of Multi30K. Our models re-implement their se-
tups used for VSE (Monolingual) and bilingual models Pivot-Sym
(Bilingual) and Parallel-Sym (Bilingual + c2c). The OE, Pivot-Asym
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I→T T→I
R@1 R@5 R@10 R@1 R@5 R@10

Sy
m
m
et
ric VSE 31.6 60.4 72.7 23.3 53.6 65.8

Pivot-Sym 31.6 61.2 73.8 23.5 53.4 65.8
Parallel-Sym 31.7 62.4 74.1 24.7 53.9 65.7

A
sy
m
m
et
ric OE 34.8 63.7 74.8 25.8 56.5 67.8

Pivot-Asym 33.8 62.8 75.2 26.2 56.4 68.4
Parallel-Asym 31.5 61.4 74.7 27.1 56.2 66.9

Monolingual 42.4 69.9 79.8 30.5 57.8 67.9
Bilingual 42.7 70.7 80.1 30.6 58.1 68.3
+ c2c 43.8 71.8 81.4 32.3 59.9 70.2

Table 6.2: English Image-to-text (I→T) and text-to-image (T→I) retrieval re-
sults on the comparable part of Multi30K, measured by Recall at 1, 5 at 10.
Typewriter font shows performance of two sets of symmetric and asymmetric
models from Gella et al. (2017).

and Parallel-Asym models are trained using the asymmetric simi-
larity measure introduced for the order-embeddings Vendrov et al.
(2016). The main differences between our models and (Gella et al.,
2017) is that they use VGG-19 image features, whereas we use ResNet50
features, and we use the max-of-hinges loss instead of the more com-
mon sum-of-hinges loss.

Table 6.2 shows the results on the English comparable 2016 test
set. Overall our scores are higher than (Gella et al., 2017), which is
most likely due to the different image features (Faghri et al. (2018)
also report a large performance gain when they use the ResNet in-
stead of the VGG image features). Nevertheless, our results show a

154



I→T T→I
R@1 R@5 R@10 R@1 R@5 R@10

Sy
m
m
et
ric VSE 29.3 58.1 71.8 20.3 47.2 60.1

Pivot-Sym 26.9 56.6 70.0 20.3 46.4 59.2
Parallel-Sym 28.2 57.7 71.3 20.9 46.9 59.3

A
sy
m
m
et
ric OE 26.8 57.5 70.9 21.0 48.5 60.4

Pivot-Asym 28.2 61.9 73.4 22.5 49.3 61.7
Parallel-Asym 30.2 60.4 72.8 21.8 50.5 62.3

Monolingual 34.2 63.0 74.0 23.9 49.5 60.5
Bilingual 35.2 64.3 75.3 24.6 50.8 62.0
+ c2c 37.9 66.1 76.8 26.6 53.0 64.0

Table 6.3: German Image-to-text (I→T) and text-to-image (T→I) retrieval re-
sults on the comparable part of Multi30K, measured by Recall at 1, 5 at 10.
Typewriter font shows performance of two sets of symmetric and asymmetric
models from Gella et al. (2017).

similar trend to the symmetric cosine similarity models from (Gella
et al., 2017): our best results are achieved with bilingual joint training
with the added c2c objective. Their models trained with an asym-
metric similarity measure show a different trend: the monolingual
model is stronger than the bilingual model, and the c2c loss provides
no clear improvement.

Table 6.3 presents the German results. Once again, our implemen-
tation outperforms Gella et al. (2017), and this is likely due to the
different visual features and max-of-hinges loss. However, our Bilin-
gual model with the additional c2c objective performs the best for
German, whereas Gella et al. (2017) reports the overall best results
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English German
I→T T→I I→T T→I

Monolingual 56.3 40.1 39.5 20.9

Bi-translation 67.4 55.1 58.3 44.6
+ c2c 58.2 47.7 51.0 39.6

Bi-comparable 67.9 55.7 62.0 48.1
+ c2c 67.6 56.0 61.9 49.1

Table 6.4: R@10 retrieval results on the comparable part of Multi30K. Bi-
translation is trained on 29K translation pair data; bi-comparable is trained by
downsampling the comparable data to 29K.

for the monolingual baseline VSE. Their models that use the asym-
metric similarity function are clearly better than the Monolingual OE
model. In general, the results from Gella et al. (2017) indicate the
benefits of bilingual joint training, however, they do not find a clear
pattern between the model configurations across languages. In our
implementation, we only focused on the symmetric cosine similarity
function and found a systematic pattern across both languages: bilin-
gual training improves results on all performance metrics for both
languages, and the additional c2c objective always provides further
improvements.

6.5.2 Translations vs. independent captions
We now study whether the model can be trained on either transla-
tion pairs or independently collected bilingual captions. Gella et al.
(2017) only conducted experiments on independently collected cap-
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tions. However, it is known that humans have equally strong pref-
erence for translated or independently collected captions of images
(Frank et al., 2018), which has implications for the difficulty and
cost of collecting training data. Our baseline is a Monolingual model
trained on 29K single-captioned images in the translation portion of
Multi30K. The Bi-translation model is trained on both German and
English, with shared parameters. Table 6.4 shows that there is a
substantial improvement in performance for both languages in the
bilingual setting. However, the additional c2c loss degrades perfor-
mance here. This could be because we only have one caption per
image in each language and it is easier to find a relationship between
these views of the translation pairs.

In the Bi-comparable setting, we randomly select an English and a
German sentence for each image in the comparable portion of Multi30K.
We only find a minor difference in performance between the transla-
tion and comparable models for English, but the German results
are improved. Crucially, it is still better than training on monolin-
gual data. In the Bi-comparable setting, the c2c loss does not have a
detrimental effect on model performance, unlike in the Bi-translation
experiment. Overall we find that the comparable data leads to larger
improvements in retrieval performance.

6.5.3 Overlapping vs. non-overlapping images
In a bilingual setting, we can improve an image-sentence ranking
model by collecting more data in a second language. This can be
achieved in two ways: by collecting captions in a new language for
the same overlapping set of images, or by using a disjoint set of images
and captions in a new language. We compare these two settings here.
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English German
I→T T→I I→T T→I

Full Monolingual 79.8 67.9 74.0 60.5
Half Monolingual 73.7 61.6 66.4 53.9

Bi-overlap 73.6 62.2 67.6 54.9
+ c2c 76.0 65.9 71.2 59.1

Bi-disjoint 73.1 62.1 67.9 54.9

Table 6.5: R@10 retrieval results on the comparable part of Multi30K. Full model
trained on the 29K images of the comparable part, Half model on 14.5K images
using random downsampling. For Bi-overlap, both English and German captions
are used for 14.5K images. For Bi-disjoint, 14.5K images are used for English and
the remaining 14.5K images for German.

In the Bi-overlap condition, we collect captions for the existing
images in a new language, i.e. we use all of the English and Ger-
man captions paired with a random selection of 50% of the images
in comparable Multi30K. This results in a training dataset of 14.5K
images with 145K bilingual captions. In the Bi-disjoint condition, we
collect captions for new images in a new language, i.e. we use all of
the English captions from a random selection of 50% of the images,
and all of the German captions for the remaining 50% of the images.
This results in a training dataset on 29K images with a total of 145K
bilingual captions.

Table 6.5 shows the results of this experiment. The upper-bound
is to train a Monolingual model on the full comparable corpus. For
the lower bound, we train Half Monolingual models by randomly sam-
pling half of the 29K images and their associated captions, giving
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72.5K captions over 14.5K images. Unsurprisingly, the Half Monolin-
gual models perform worse than the Full Monolingual models. In the
Bi-overlap experiment, the German model is improved by collecting
captions for the existing images in English. There is no difference
in the performance of the English model, echoing the results from
Section 6.5.1. The Bi-overlap model also benefits from the added
c2c objective. Finally, the Bi-disjoint model performs as well as the
Bi-overlap model without the c2c objective. (It was not possible to
train the Bi-disjoint model with the additional c2c objective because
there are no caption pairs for the same image.)

Overall, these results suggest that it is best to collect additional
captions in the original language, but when adding a second language,
it is better to collect extra captions for existing images and exploit
the additional c2c ranking objective.

6.6 Multilingual experiments
We now turn our attention to multilingual learning using the English,
German, French and Czech annotations in the translation portion of
Multi30K. We only report the text-to-image (T→I) R@10 results due
to space limitations.

We did not repeat the overlapping vs. non-overlapping experi-
ments from Section 6.5.3 in a multilingual setting because this would
introduce too much data sparsity. In order to conduct this experi-
ment, we would have to downsample the already low-resource French
and Czech captions by 50%, or even further for multi-way experi-
ments.
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6.6.1 Translation vs. independent captions
Table 6.6 shows the results of repeating the translations vs. com-
parable captions experiment from Section 6.5.2 with data in four
languages. The Multi-translation models are trained on 29K images
paired with a single caption in each language. These models perform
better than their Monolingual counterparts, and the German, French,
and Czech models are further improved with the c2c objective. The
Multi-comparable models are trained by randomly sampling one En-
glish and one German caption from the comparable dataset, alongside
the French and Czech translation pairs. These models perform as well
as the Multi-translation models, and the c2c objective brings further
improvements for all languages in this setting.

These results clearly demonstrate the advantage of jointly training
on more than two languages. Text-to-image retrieval performance
increases by more than 11 R@10 points for each of the four languages
in our experiment.

6.6.2 High-to-low resource transfer
We now examine whether the lower-resource French and Czech mod-
els benefit from training with the full complement of the higher-
resource English and German comparable data. Therefore we train
a joint model on the translation as well as comparable portions of
Multi30K, and examine the performance on French and Czech.

Table 6.7 shows the results of this experiment. We find that
the French and Czech models improve by 8.8 and 5.5 R@10 points
respectively when they are only trained on the multilingual transla-
tion pairs (compared to the monolingual version), and by another
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En De Fr Cz

Monolingual 50.4 39.5 47.0 42.0

Multi-translation 58.7 51.2 57.0 51.0
+ c2c 56.3 52.2 55.0 51.6

Multi-comparable 59.2 49.6 57.2 50.8
+ c2c 61.8 52.7 59.2 55.2

Table 6.6: The Monolingual and joint Multi-translation models trained on transla-
tion pairs, and the Multi-comparable trained on the downsampled comparable set
with one caption per image.

2.2 and 2.8 points if trained on the extra 155K English and German
comparable descriptions. We also find that the additional c2c objec-
tive improves the Czech model by a further 4.8 R@10 points (this
improvement is likely caused by training the model on 46 possible
caption pairs). Our results show the impact of jointly training with
the larger English and German resources, which demonstrates the
benefits of high-to-low resource transfer.

6.6.3 Bilingual vs. multilingual
Finally, we investigate how useful it is to train on four languages in-
stead of two. Figure 6.3 presents the image-to-text and text-to-image
retrieval results of training Monolingual, Bilingual, or Multilingual
models. The Monolingual and Bilingual models are trained on a ran-
dom single-caption-image subsample of the comparable dataset with
the additional c2c objective, as this configuration provided the over-
all best results in Sections 6.5.2 and 6.6.1. The Multilingual models
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French Czech

Monolingual 47.0 42.0
Multilingual 56.3 51.3
+ Comparable 58.9 52.4
+ c2c 61.6 57.2

Table 6.7: Multilingual is trained on all translation pairs, + Comparable adds the
comparable data set.

are trained with the additional French and Czech translation data.
As can be seen in Figure 6.3, the performance on both tasks and for
both languages improves as we move from using data from one to
two to four languages.

6.7 Conclusions
We learn multilingual multimodal sentence embeddings and show
that multilingual joint training improves over bilingual joint training.
We also demonstrate that low-resource languages can benefit from the
additional data found in high-resource languages. Our experiments
suggest that either translation pairs or independently-collected cap-
tions improve the performance of a multilingual model, and that the
latter data setting provides further improvements through a caption–
caption ranking objective. We also show that when collecting data in
an additional language, it is better to collect captions for the existing
images because we can exploit the caption–caption objective. Our re-
sults lead to several directions for future work. We would like to pin
down the mechanism via which multilingual training contributes to
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Figure 6.3: Comparing models from the Monolingual, Bilingual and Multilingual
settings. The Monolingual and Bilingual models are trained on the downsampled
English and German comparable sets with additional c2c objective. The Multilin-
gual model uses the French and Czech translation pairs as additional data. The re-
sults are reported on the full 2016 test set of the comparable portion of Multi30K.
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improved performance for image-sentence ranking. Additionally, we
only consider four languages and show the gain of multilingual over
bilingual training only for the English-German language pair. In fu-
ture work we will incorporate more languages from data sets such as
the Chinese Flickr8K (Li et al., 2016c) or Japanese COCO (Miyazaki
& Shimizu, 2016).
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7
Bootstrapping disjoint datasets for

multilingual multimodal
representation learning

Abstract Recent work has highlighted the advantage of jointly
learning grounded sentence representations from multiple languages.
However, the data used in these studies has been limited to an aligned
scenario: the same images annotated with sentences in multiple lan-
guages. We focus on the more realistic disjoint scenario in which
there is no overlap between the images in multilingual image–caption
datasets. We confirm that training with aligned data results in better
grounded sentence representations than training with disjoint data,
as measured by image–sentence retrieval performance. In order to
close this gap in performance, we propose a pseudopairing method to
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generate synthetically aligned English–German–image triplets from
the disjoint sets. The method works by first training a model on
the disjoint data, and then creating new triples across datasets us-
ing sentence similarity under the learned model. Experiments show
that pseudopairs improve image–sentence retrieval performance com-
pared to disjoint training, despite requiring no external data or mod-
els. However, we do find that using an external machine translation
model to generate the synthetic data sets results in better perfor-
mance.
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This chapter is based on Kádár, Á., Chrupała, G., Alishahi, A.,
& Elliott, D. (2019). Bootstrapping disjoint datasets for multilingual
multimodal representation learning. Submitted to Empirical Methods
in Natural Language Processing (EMNLP)
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7.1 Introduction
The perceptual-motor system plays an important role in concept ac-
quisition and representation, and in learning the meaning of linguis-
tic expressions (Pulvermüller, 2005). In natural language processing,
many approaches have been proposed that integrate visual informa-
tion in the learning of word and sentence representations, highlighting
the benefits of visually grounded representations (Lazaridou et al.,
2015; Baroni, 2016; Kiela et al., 2018; Elliott & Kádár, 2017). In
these approaches the visual world is taken as a naturally occurring
meaning representation for linguistic utterances, grounding language
in perceptual reality.

Recent work has shown that we can learn better visually grounded
representations of sentences by training image–sentence ranking mod-
els on multiple languages (Gella et al., 2017; Kádár et al., 2018). This
line of research has focused on training models on datasets where
the same images are annotated with sentences in multiple languages.
This alignment has either been in the form of the translation pairs
(e.g. German, English, French, and Czech in Multi30K (Elliott et al.,
2016)) or independently collected sentences (English and Japanese in
STAIR (Yoshikawa et al., 2017)).

In this chapter, we consider the problem of training an image–
sentence ranking model using image-caption collections in different
languages with non-overlapping images drawn from different sources.
We call these collections disjoint datasets, as opposed to aligned
datasets. Kádár et al. (2018) showed that a model trained on dis-
joint datasets performs on-par with a model trained on aligned data.
However, the disjoint datasets in their paper are artificial because
they were formed by randomly splitting the Multi30K dataset into
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two halves. We examine whether the ranking model can benefit from
multilingual supervision when it is trained using disjoint datasets
drawn from different sources. In experiments with the Multi30K
and COCO datasets, we find substantial benefits from training with
these disjoint sources, but the best performance comes from training
on aligned datasets.

Given the empirical benefits of training on aligned datasets, we ex-
plore two approaches to creating synthetically aligned training data in
the disjoint scenario. One approach to creating synthetically aligned
data is to use an off-the-shelf machine translation system to generate
new image-caption pairs by translating the original captions. This ap-
proach is very simple, but has the limitation that an external system
needs to be trained, which requires additional data.

The second approach is to generate synthetically aligned data that
are pseudopairs. We assume the existence of image–caption datasets
in different languages where the images do not overlap between the
datasets. Pseudopairs are created by annotating the images of one
dataset with the captions from another dataset. This can be achieved
by leveraging the sentence similarities predicted by an image-sentence
ranking model trained on the original image–caption datasets. One
advantage of this approach is that it does not require additional mod-
els or datasets because it uses the trained model to create new pairs.
The resulting pseudopairs can then be used to re-train or fine-tune
the original model.

In experiments on the Multi30K and COCO datasets, we find that
using an external machine translation system to create the synthetic
data improves image–sentence ranking performance by 26.1% com-
pared to training on only the disjoint data. The proposed pseudopair
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approach consistently improves performance compared to the disjoint
baseline by 6.4%, and, crucially, this improvement is achieved with-
out using any external datasets or pre-trained models. We expect
that there is a broad scope for more complex pseudopairing methods
in future work in this direction.

7.2 Method
We adopt the model architecture and training procedure of Kádár
et al. (2018) for the task of matching images with sentences. This
task is defined as learning to rank the sentences associated with an
image higher than other sentences in the data set, and vice-versa
(Hodosh et al., 2013). The model is comprised of a recurrent neural
network language model and a convolutional neural network image
encoder. The parameters of the language encoder are randomly ini-
tialized, while the image encoder is pre-trained, frozen during training
and followed by a linear layer which is tuned for the task. The model
is trained to make true pairs < a, b > similar to each other, and con-
trastive pairs < â, b > and < a, b̂ > dissimilar from each other in a
joint embedding space by minimizing the max-violation loss function
(Faghri et al., 2018):

J (a, b) = max
<â,b>

[max(0, α− s(a, b) + s(â, b))] +

max
<a,b̂>

[max(0, α− s(a, b) + s(a, b̂))]
(7.1)

In our experiments, the < a, b > pairs are either image-caption
pairs < i, c > or caption–caption pairs < ca, cb > (following Gella
et al. (2017); Kádár et al. (2018)). When we train on < i, c > pairs,
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we sample a batch from an image–caption data set with uniform prob-
ability, encode the images and the sentences, and perform an update
of the model parameters. For the caption–caption objective, we follow
Kádár et al. (2018) and generate a sentence pair data set by taking
all pairs of sentences that belong to the same image and are written
in different languages: 5 English and 5 German captions result in 25
English-German pairs. The sentences are encoded and we perform
an update of the model parameters using the same loss. When train-
ing with both the image–caption and caption–caption (c2c) ranking
tasks, we randomly select the task to perform with probability p=0.5.

7.2.1 Generating Synthetic Pairs
We propose two approaches to creating synthetic image–caption pairs
to improve image–sentence ranking models when training with dis-
joint data sets. We assume the existence of datasets D1: < I1, Cℓ1 >
and D2: < I2, Cℓ2 > consisting of image–caption pairs < i1i , c

ℓ1
i > and

< i2i , c
ℓ2
i > in languages ℓ1 and ℓ2, where the image sets do not overlap

I1 ∩ I2 = ∅. We seek to extend < I2, Cℓ2 > to a bilingual dataset
with synthetic captions ĉℓ1i ∈ Ĉℓ1 in language ℓ1, resulting in a triplet
data set < I2, Ĉℓ1 , Cℓ2 > consisting of triplets < i2i , ĉ

ℓ1
i , c

ℓ2
i >. We

hypothesize that the new dataset will improve model performance
because it will be trained to map the images to captions in both
languages.

7.2.2 Pseudopairs approach
Given two image-caption corpora < I1, Cℓ1 > and < I2, Cℓ2 > with
pairs < i1i , c

ℓ1
i > and < i2i , c

ℓ2
i >, we generate a pseudopair corpus
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labeling each image in I2 with a caption from Cℓ1 . In our experiments,
we create pseudopairs only in one direction leading to new image–
caption pairs < i2, ĉℓ1 >.

The pseudopairs are generated using the sentence representations
of the model trained on both corpora < I1, Cℓ1 > and < I2, Cℓ2 >
jointly. We encode all captions cℓ1i ∈ Cℓ1 and cℓ2i ∈ Cℓ2 and for each cℓ2i
find the most similar caption ĉℓ1i using the cosine similarity between
the sentence representations. This leads to pairs < cℓ2i , ĉ

ℓ1
i > and as

a result to triplets < i2i , c
ℓ2
i , ĉ

ℓ1
i > .

Filtering Optionally we filter the resulting pseudopair set Cℓ1 , in
an attempt to avoid misleading samples with three filtering strategies:

1. No filtering.

2. Keep top: keep items with similarity scores in the 75% per-
centile; keep top 25%

3. Remove bottom: keep items with similarity scores in the 25%;
remove bottom 25%

Fine-tuning vs. restart After the pseudopairs are generated we
consider two options: re-train the model from scratch with all previ-
ous data sets adding the generated pseudopairs or fine-tunening with
same data sets and the additional pseudopairs.
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7.2.3 Translation approach
Given a corpus < I2, Cℓ2 > with pairs < i2i , c

ℓ2
i >, we use a ma-

chine translation system to translate each caption cℓ2i to a language
ℓ1 leading to new image–caption pairs < i2i , ĉ

ℓ1
i >1. Any off-the-shelf

translation system could be used to create the translated captions,
e.g. an online service, such as Google Translate, or a pre-trained
translation model. Here, we use a pre-trained model as it facilitates
reproduction.

7.3 Experimental Protocol

7.3.1 Model
Our implementation, training protocol and parameter settings are
based on the existing codebase of Kádár et al. (2018). In all exper-
iments, we use the 2048 dimensional image features extracted from
the last average-pooling layer of a pre-trained2 ResNet50 CNN (He
et al., 2016).

The image representation used in our model is obtained by a single
affine transformation that we train from scratch WI ∈ R2048×1024. For
the sentence encoder we use a uni-directional Gated Recurrent Unit
(GRU) network (Cho et al., 2014a) with a single hidden layer with
1024 hidden units and 300 dimensional word embeddings. When
training bilingual models we use a single word embedding for the

1Li et al. (2016c) used a similar approach to create Chinese captions for images
in the Flickr8K dataset, but they used the translations to train a Chinese image
captioning model.

2Trained on the ILSVRC 2012 1.2M image 1000 class object classification
subset ImageNet (Russakovsky et al., 2015)
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same word-forms, making no distinction if they come from different
languages. Each sentence is represented by the final hidden state of
the GRU. For the similarity function in the loss function (Eq. 1) we
use cosine similarity and α = 0.2 margin parameter.

In all experiments we inspect the model performance on the valida-
tion set at every 500 updates and stop training when no improvement
is observed for 10 inspections. The performance metric we use as the
stopping criterion is the sum of text-to-image (T→I) and image-to-
text (I→T) recall scores at ranks 1, 5 and 10 across all languages in
the training data. In all experiments we use a batch-size of 128. The
models are trained with the Adam optimizer (Kingma & Ba, 2014)
using default parameters and an initial learning rate of 2e-4 without
applying any learning-rate decay schedule. We apply gradient norm
clipping with a value of 2.0.

We use a pre-trained OpenNMT (Klein et al., 2017) English-
German machine translation model3 to create the data for the trans-
lation approach described in Section 7.2.3.

7.3.2 Datasets
The models are trained and evaluated on the bilingual English-German
Multi30K dataset (M30K), and we optionally train on the English
COCO dataset (Chen et al., 2015b). In monolingual experiments,
the model is trained on a single language from M30K or COCO.

In the aligned bilingual experiments, we use the independently
collected English and German captions in M30K: The training set
consists of 29K images and 145K captions; the validation and test

3https://s3.amazonaws.com/opennmt-models/wmt-ende_
l2-h1024-bpe32k_release.tar.gz
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sets have 1K images and 5K captions.
For the disjoint experiments, we use the COCO data set with the

Karpathy & Fei-Fei (2015) splits. This gives 82,783 training, 5,000
validation, and 5,000 test images; each image is paired with five cap-
tions. The data set has an additional split containing the 30,504 im-
ages from the original validation set of MS-COCO (“restval”), which
we add to the training set as in previous work (Karpathy & Fei-Fei,
2015; Vendrov et al., 2016; Faghri et al., 2018).

7.3.3 Evaluation
We report results on Multimodal Translation Shared Task 2016 test
split (Specia et al., 2016b) of M30K. In favor of more clarity, we only
report recall at 1 (R@1) for Image-to-Text (I→T) and Text-to-Image
(T→I) retrieval, and the sum of R@1, R@5, and R@10 recall scores
across both tasks and languages (Sum).4

7.4 Baseline Results
The experiments presented here set the baseline performance for the
visually grounded bilingual models and introduces the data settings
that we will use in the later sections.

Aligned In these experiments we only use the aligned English-
German data from M30K. Tables 7.1 and 7.2 present the result for
English and German, respectively. The Sum-of-recall scores for both
languages show that the best approach is the bilingual model with

4This is the criterion we use for early-stopping.
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English
I → T T → I Sum

En 40.5 28.8 346.4
+ De 41.4 29.9 352.8
+ c2c 42.8 32.1 361.6

COCO 34.4 24.8 304.0
+ En 46.2 33.4 374.4

Table 7.1: Performance on the English M30K 2016 test set in the aligned setting
for models trained on M30K English (En), both M30K German and English (+De),
with caption ranking (+c2c), COCO (COCO) and both COCO and M30K English
(+En).

the c2c loss (En+De+c2c, and De+En+c2c). These results reproduce
the findings of Kádár et al. (2018).

Disjoint We now determine the performance of the model when it
is trained on data drawn from different data sets with no overlapping
images.

First we train two English monolingual models: one on the M30K
English dataset and one on the English COCO dataset. Both models
are evaluated on image–sentence ranking performance on the M30K
English test 2016 set. The results in Table 7.1 show that there is
a substantial difference in performance in both text-to-image and
image-to-text retrieval, depending on whether the model is trained
on the M30K or the COCO dataset. The final row of Table 7.1 shows,
however, that jointly training on both data sets improves over only
using the M30K English training data.

We also conduct experiments in the bilingual disjoint setting,
where we study whether it is possible to improve the performance
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German
I → T T → I Sum

De 34.9 24.6 311.2
+ En 38.6 26.0 324.6
+ c2c 38.3 27.7 334.0

+ COCO 36.4 25.7 319.7

Table 7.2: Performance on the German M30K 2016 test set in the aligned and
disjoint settings for models trained on M30K German (De), both M30K German
and English (+En), and with caption ranking (+c2c) and both M30K German and
COCO (+COCO).

English German
I → T T → I Sum I → T T → I Sum

En+De+c2c 42.8 28.6 361.6 38.3 27.7 334.0
+ COCO 46.5 34.8 378.9 40.6 28.8 344.6

Table 7.3: Recall @ 1 and Sum-of-Recall-Scores for Image-to-Text (I → T) and
Text-to-Image (T → I) baseline results on the English and German M30K 2016
test in the aligned plus disjoint setting

of a German model using the out-of-domain English COCO data.
Table 7.2 shows that there is an increase in performance when the
model is trained on the disjoint sets, as opposed to only the in-domain
M30K German (compare De against De+COCO). This result is not
too surprising as we have observed both the advantage of joint train-
ing on both languages in the aligned setting and the overlap between
the different datasets.

Finally, we compare the performance of a German model trained
in the aligned and disjoint settings. We find that a model trained
in the aligned setting (De+En) is better than a model trained in the
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disjoint setting (De+COCO), as shown in Table 7.2. This finding
contradicts the conclusion of Kádár et al. (2018), who claimed that
the aligned and disjoint conditions lead to comparable performance.
This is most likely because the disjoint setting in Kádár et al. (2018) is
artificial, in the sense that they used different 50% subsets of M30K.
In our experiments the disjoint image–caption sets are real, in the
sense that we trained the models on the two different datasets.

Aligned plus disjoint Our final baseline experiments explore the
combination of disjoint and aligned data settings. We train an English-
German bilingual model with the c2c objective on M30K, and we also
train on the English COCO data. Table 7.3 shows that adding the
disjoint data improves performance for both English and German
compared to training solely the aligned model.

Summary First we reproduced the findings of Kádár et al. (2018)
showing that bilingual joint training improves over monolingual and
using c2c loss further improves performance. Furthermore, we have
found that adding the COCO as additional training data both when
only training on German, and training on both German-English from
M30K improves performance even if the model is trained on data
drawn from a different dataset.

7.5 Training with Pseudopairs
In this section we turn our attention to creating a synthetic English-
German aligned data set from the English COCO using the pseu-
dopair method (Section 7.2.1). The synthetic data set is used to
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German
I → T T → I Sum

De + COCO 36.4 25.7 319.7
+ pseudo 37.3 25.2 319.9
+ fine-tune 38.0 25.6 322.9

+ pseudo 25% 37.3 25.9 320.9
+ fine-tune 37.2 25.7 320.7

+ pseudo 75% 36.8 25.1 316.3
+ fine-tune 36.5 25.5 317.5

Table 7.4: A disjoint model is trained on the De+COCO datasets and used to
generate pseudopairs. Then the full pseudopair set (+pseudo) or the filtered ver-
sions (+pseudo 25% and +pseudo 75%) are used as an extra data set to either
re-train the moddel from scratch or fine-tune the original De+COCO model (+fine-
tune).

train an image-sentence ranking model either from scratch or by fine-
tuning the original model; in addition, we also explore the effect of
using all of the pseudopairs or by filtering the pseudopairs. We hy-
pothesise that training a model with the additional pseudopairs will
improve over the aligned plus disjoint baseline.

Disjoint We generate pseudopairs using the disjoint bilingual model
trained on the German M30K and the English COCO. Table 7.4 re-
ports the results when evaluating on the M30K German data. Line
2 shows that using the full pseudopair set and re-training the model
does not lead to noticeable improvements. However, line 3 shows
that performance increases when we train with all pseudopairs and
fine-tuning the original disjoint bilingual model. Filtering the pseu-
dopairs at either the 25% and 75% percentile is detrimental to the
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English German

I → T T → I Sum I → T T → I Sum Sum(Sum)

En+De+COCO+c2c 46.5 34.8 378.9 40.6 28.8 344.6 723.5
+ pseudo 48.1 35.6 382.3 41.8 29.0 345.6 727.8
+ fine-tune 47.0 35.7 381.5 40.9 28.7 346.8 728.2

+ pseudo 25% 47.5 34.9 380.2 41.5 28.9 345.5 725.7
+ fine-tune 46.1 35.4 379.7 41.6 29.1 347.8 727.5

+ pseudo 75% 45.9 34.0 373.6 40.3 27.9 339.1 712.7
+ fine-tune 46.2 35.1 378.6 41.0 29.1 345.1 723.6

+ Translation 47.5 36.2 384.5 43.5 30.5 357.9 742.4

Table 7.5: We train the aligned plus disjoint model with c2c loss and add the
full pseudopair set (+pseudo) or the filtered versions (+pseudo 25% and +pseudo
75%) is added as an extra data set. The model is either re-trained from scratch
or fine-tuned (+fine-tune). We also report the result of training the aligned plus
disjoint model with the synthetic translations (+Translation).

final performance.5

Aligned plus disjoint We generate pseudopairs using a model
trained on M30K English-German data with the c2c objective and the
English COCO data set. The results for both English and German are
reported in Table 7.5; note that when we train with the pseudopairs
we also train with the c2c loss on both data sets. Overall we find
that pseudopairs improve performance, however, we do not achieve
the best results for English and German in the same conditions. The
best results for German are to filter at 25% percentile and apply fine-
tuning, while for English the best results are without filtering or fine-
tuning. The best overall model is trained with all the pseudopairs
with fine-tuning, according to the Sum of the Sum-of-recall scores

5 We did not find any improvements in the disjoint setting when training with
pseudopairs and the additional c2c loss.
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German
I → T T → I Sum

De + COCO 36.4 25.7 319.7
+ Translation 37.7 26.3 327.2
+ c2c 39.9 26.7 335.5

Table 7.6: Results on the German M30K 2016 test set with the aligned plus dis-
joint (En+De+COCO+c2c) model, the additional automatically translated COCO
(+Translation) and with the c2c on the synthetic pairs.

across both English and German. The performance across both data
sets is increased from 723.5 to 728.2 using the pseudopair method.

Summary In both aligned plus disjoint and disjoint scenarios, the
additional pseudopairs improve performance, and in both cases the
overall best performance is achieved when applying the fine-tuning
strategy and no filtering of the samples.

7.6 Training with Translations
We now focus on our second approach to creating an English-German
aligned dataset using the translation method described in Section
7.2.1.

Disjoint We first report the results of disjoint bilingual model trained
on the German M30K, the English COCO data, and the translated
German COCO in Table 7.6. The results show that retrieval per-
formance is improved when the model is trained on the translated
German COCO data in addition to the English COCO data. We
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find the best performance when we jointly train on the M30K Ger-
man, the Translated German COCO and the English COCO with
the additional c2c objective over the COCO datasets (+c2c). We
note that this setup leads to a better model, as measured by the sum-
of-recall-scores, than training on the aligned M30K data (compare
De+COCO+Translation+c2c in Table 7.6 to De+En+c2c in Table
7.2).

Aligned plus Disjoint In these experiments, we train models with
the aligned M30K data, the disjoint English COCO data, and the
translated German COCO data. Table 7.5 presents the results for the
English and German evaluation. We find that training on the German
Translated COCO data and using the c2c loss over the COCO data
results in improvements for both languages.

Summary In both the disjoint and aligned plus disjoint settings,
we find that training with the translations of COCO improves perfor-
mance over training with only the English COCO data.

7.6.1 Sentence-similarity quality
The core of the proposed pseudopairing method is based on measur-
ing the similarity between sentences, but how well does our model
encode similar sentences? Here we analyze the ability of our models
to identify translation equivalent sentences using the English-German
translation pairs in the Multi30K test 2016 data. This experiment
proceeds as follows: (i) we assume a pre-trained image–sentence rank-
ing model, (ii) we encode the German and English sentences using
the language encoder of the model, (iii) we calculate the model’s per-
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formance on the task of ranking the correct translation for English
sentences, given the German caption, and vice-versa.

To put our results into perspective we compare to the best ap-
proach to our knowledge as reported by Rotman et al. (2018): DPCCA
is a deep partial canonical correlation analysis method maximizing
the canonical correlation between captions of the same image condi-
tioned on image representations as a third view. Table 7.7 reports the
results of this experiment. Our models consistently improve upon the
state-of-the-art. The baseline aligned model trained on the Multi30K
data slightly outperforms the DPCCA for EN → DE retrieval, and
more substantially outperforms DPCCA for DE → EN. If we train
the same model with the additional c2c objective, R@1 improves by
8.0 and 12.1 points, respectively. We find that adding more monolin-
gual English data from the external COCO data set slightly degrades
retrieval performance, and that performing sentence retrieval using
a model trained on the disjoint M30K German and English COCO
data sets result in much lower retrieval performance. We conclude
that the model that we used to estimate sentence similarity is the
best-performing method known for this task on this data set, but
there is room for improvement for models trained on disjoint data
sets.

7.6.2 Characteristics of the Pseudopairs
We now investigate the properties of the pseudopairs generated by
our method. In particular, we focus on pseudpairs generated by
an aligned plus disjoint model (En+De+COCO+c2c) and a disjoint
model (De+COCO).

The pseudopairs generated by the aligned plus disjoint model
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EN → DE DE → EN
DPCCA 82.6 79.1
En + De 82.7 83.4
En + De + c2c 90.6 91.2
En + De + COCO 82.5 81.0
En + De + COCO + c2c 90.0 90.1
De + COCO 73.4 70.7

Table 7.7: Translation retrieval results (Recall @ 1) on the M30K 2016 test set
compared to the state of the art.

cover 40% of the German captions in the M30K data set, and overall,
the pseudopairs form a heavy-tailed distribution. We find a similar
pattern for the pseudopairs generated by the disjoint model: the pseu-
dopairs cover 37% of the M30K data set, and the top 150 captions
cover 23% of the data. This is far from using each caption equally in
the pseudopair transfer, and may suggest a hubness problem (Dinu
et al., 2015). We assessed the stability of the sets of transferred
captions using the Jaccard measure in two cases: (i) different ran-
dom seeds, and (ii) disjoint or aligned plus disjoint. For the aligned
plus disjoint model, we observe an overlap of 0.53 between different
random seeds compared to 0.51 for the disjoint model. The overlap
between the two types of models is much lower at 0.41. Finally, we
find that when a caption is transferred by both models, the overlap
of the caption annotating the same COCO image is 0.33 for the dis-
joint model, and 0.34 for the aligned plus disjoint model, and the
overlap between the models is 0.16. This shows that the models do
not transfer the same captions for the same images.

Figure 7.1 presents examples of the annotations transferred using
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the pseudopair method. The first example demonstrates the differ-
ence between the Multi30K and COCO datasets: there are no giraffes
in the former, but there are dogs (“Hund”). In the second example,
both captions imply that the man sits on the tree not beside it. This
shows that even if the datasets are similar, transferring a caption
that exactly matches the picture is difficult. The final two examples
show semantically accurate and similar sentences are transferred by
both models. In the fourth example, both models transfer exactly
the same caption.

7.7 Related Work
Image–sentence ranking is the task of retrieving the sentences that
best describe an image, and vice-versa (Hodosh et al., 2013). Most
recent approaches are based on learning to project image represen-
tations and sentence representations into a shared space using deep
neural networks (Frome et al., 2013; Socher et al., 2014; Vendrov
et al., 2016; Faghri et al., 2018, inter-alia).

More recently, there has been a focus on solving this task us-
ing multilingual data (Gella et al., 2017; Kádár et al., 2018) in the
Multi30K dataset (Elliott et al., 2016); an extension of the popular
Flickr30K dataset into German, French, and Czech. These works
take a multi-view learning perspective in which images and their
descriptions in multiple languages are different views of the same
concepts. The assumption is that common representations of multi-
ple languages and perceptual stimuli can potentially exploit comple-
mentary information between views to learn better representations.
For example, Rotman et al. (2018) improves bilingual sentence rep-
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1.) Ein hund
steht auf einem
baumstamm im
wald.
[A dog is stand-
ing on a tree
trunk in the for-
est.]

2.) Hund im
wald.
[Dog in the for-
est.]

1.) Mann sitzt
im baum.
[Man is sitting in
the tree.]

2.) Der mann
der auf einem
baum sitzt.
[The man sits on
the tree.]

1.) Ein mann
sitzt in einem
boot auf einem
see.
[A man is sitting
in a boat on a
lake.]

2.) Ein mann
sitzt am see auf
dem ein boot
fährt.
[A man is sitting
at the lake on
which a boat is
riding.]

1.) Ein jet jagt
steil in die luft,
viel rauch kommt
aus dem rumpf.
[A jet goes steep
up into the air,
a lot of smoke is
coming out of its
hull.]

2.) Ein jet jagt
steil in die luft,
viel rauch kommt
aus dem rumpf.
[A jet goes steep
up into the air,
a lot of smoke is
coming out of its
hull.]

Figure 7.1: Visualisation of the sentences transferred from Multi30K to the COCO
data set using the pseudopair method. (1) is transferred from a model trained on
De+COCO, whereas (2) is transferred from En+De+COCO.

resentations by incorporating image information as a third view by
Deep Partial Canonical Correlation Analysis. More similar to our
work Gella et al. (2017), propose a convolutional-recurrent architec-
ture with both an image–caption and caption–caption loss to learn
bilingual visually grounded representations. Their results were im-
proved by the approach presented in Kádár et al. (2018), who has
also shown that the multilingual models outperform bilingual mod-
els, and that image–caption retrieval performance in languages with
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less resources can be improved with data from higher-resource lan-
guages. We largely follow Kádár et al. (2018), however, our main
interest lies in learning multimodal and bilingual representations in
the scenario where the images do not come from the same data set
i.e.: the data is presented is two sets of image–caption tuples rather
than image–caption–caption triples.

Taking a broader perspective, images have been used as pivots
in multilingual multimodal language processing. On the word level
this intuition is applied to visually grounded bilingual lexicon induc-
tion, which aims to learn cross-lingual word representations without
aligned text using images as pivots (Bergsma & Van Durme, 2011;
Kiela et al., 2015; Vulić et al., 2016; Hartmann & Søgaard, 2018;
Hewitt et al., 2018). Images have been used as pivots to learn trans-
lation models only from image–caption data sets, without parallel
text (Hitschler et al., 2016; Nakayama & Nishida, 2017; Lee et al.,
2018; Chen et al., 2018).

7.8 Conclusions
Previous work has demonstrated improved image–sentence ranking
performance when training models jointly on multiple languages (Gella
et al., 2017; Kádár et al., 2018). Here we presented a study on learn-
ing multimodal and multilingual representations in the disjoint set-
ting, where images between languages do not overlap. We found that
learning representations in this setting is more challenging. To close
the gap, we developed a pseudopairing technique that creates syn-
thetic pairs by annotating the images from one of the data sets with
the image descriptions of the other using the sentence similarities
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of the model trained on both. We showed that training with pseu-
dopairs improves performance, without the need to augment training
from additional data sources or other pipeline components. However,
our technique is outperformed by creating synthetic pairs using an off-
the-shelf automatic machine translation system. As such our results
suggest that it is better to use translation, when a good translation
system is available, however, in its absence, pseudopairs offer consis-
tent improvements. We have found that our pseudopairing method
only transfers annotations from a small number of images and in the
future we plan to substitute our naive matching algorithms with ap-
proaches developed to mitigate this hubness issue (Radovanović et al.,
2010) and to close the gap between translation and pseudopairs.
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8
Discussion and Conclusion

Traditional techniques to learn representations of words and sen-
tences only consider linguistic context as a source of information and
focus on the representation of a single language. The aim of this
thesis was to make advances towards learning and understanding vi-
sually grounded and multilingual representations. This final chapter
is dedicated not only to briefly summarize our main findings, but also
to point to some of the limitations of our work and towards future
directions.

8.1 Visually grounded word representa-
tions

The starting point of the thesis is visual grounding on the word
level for a single language. Chapter 3 is dedicated to learning word-
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representations based on the co-occurrences between words and high-
level global image features. We implemented a model taking inspira-
tion from the cross-situational account of word acquisition: a frame-
work of lexical development based on the process of children repeat-
edly being exposed to pairs of linguistic utterances and perceptual
stimuli. Throughout this process they learn a mapping between lin-
guistic units and their referents updating their hypothesis based on
a stream of co-occurrence statistics between modalities as evidence.

We departed in two major ways from the canonical computational
cross-situational models (Siskind, 1996; Fontanari et al., 2009; Fazly
et al., 2010a; Kachergis et al., 2012; Matusevych et al., 2013; Yu
& Siskind, 2013): 1.) we use large image–description benchmark
datasets developed for machine learning purposes, which naturally
present a high level of referential uncertainty and ambiguity and 2.)
continuous image representations rather than artificial symbolic scene
descriptors.

We adapted the cross-situational word learning model of Fazly
et al. (2010a) – an online version of the IBM Model 1 word-translation
model (Brown et al., 1993) – to take as input scene representations
convolutional neural network activations. Even more unorthodox in
the cross-situational literature our model does not learn a mapping be-
tween words and objects (Fazly et al., 2010a; Lazaridou et al., 2016),
but the strength of the relationship between words and high-level
global image feature descriptors. As such our main experimental pro-
tocol is related, but departs from the standard word-object retrieval
evaluation performed on the CHILDES data set (Goodman et al.,
2008; Kievit-Kylar et al., 2013; Lazaridou et al., 2016) and is more
similar to performing image–tagging (Weston et al., 2010). Through
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retrieval experiments we find that our model tags images with rele-
vant concepts and as such learns to ground the meaning of words in
visual scenes.

In another experiment we measure the correlation between word
similarities under our model and according to human participants
and compare the results to a state-of-the-art distributional model
trained on the same text corpus. Word-similarity benchmarks were
the standard method at the time to compare computational models
of word meaning (Faruqui & Dyer, 2014), however, we do note that
concerns about the validity and consistency of this methodology has
been raised (Faruqui et al., 2016).

This protocol allowed us to directly compare a cross-situational
and visually grounded computational model of child word learning
to the state of the art distributional word2vec approach of the time.
The models perform on the same level, however, by creating abstract
and concrete portions of the word similarity benchmarks we find that
the distributional word2vec is better on the abstract, while the cross-
situational model on the concrete portion. This result highlights the
complementarity of these different sources of learning signals.

Even though our algorithm introduced in Chapter 3 is incremen-
tal and is based on a well established model of word-learning (Fazly
et al., 2010a) it is not intended as a complete account of child lexical
development. Consider the lack of integration of social cues or parent
directed attention, both of which have been shown to boost learning
in children (Gleitman, 1990; Tomasello & Akhtar, 1995) and in com-
putational cross situational models of word learning (Yu & Ballard,
2007; Lazaridou et al., 2016).
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8.2 Visually grounded sentence represen-
tations

Moving from representations of words to full sentences in Chapter 4
we continue our comparative study between distributional and visu-
ally grounded representations. Concretely, in Chapter 4 we analyze
the patterns of hidden activations in our recurrent visually-grounded
language learning model IMAGINET (Chrupała et al., 2015).

IMAGINET consists of two separate recurrent networks coupled
through a shared word embedding matrix. The VISUAL pathway
performs visually grounded learning through an image–sentence rank-
ing objective, while TEXTUAL is trained as a language model to
maximize the likelihood of the following word given the preceding
context.

Chapter 4 is dedicated to an in-depth investigation of the kind of
linguistic structure that is encoded in the hidden activations IMAG-
INET. Crucially, we perform a controlled comparison between the
grounded VISUAL and the distributional TEXTUAL pathways:
both models have the same architecture and share word-embeddings.
As the linguistic interpretation of representations learned by recur-
rent networks did not enjoy a large amount of attention at the time
we introduced two novel techniques.

Firstly, we introduced the omission score, an input-perturbation-
based saliency metric assigning a real-valued importance score to
each input token signaling how much impact they have on the fi-
nal sentence representation. Through computing the log ratios of
the omission score distribution over part-of-speech tags and depen-
dency labels between VISUAL and TEXTUAL we find that the
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representations of the former is more impacted by words belonging
to categories usually filled with semantic content, while for TEX-
TUAL the distribution is fairly uniform.

To disentangle the impact of word forms and their functions on
the representations we fit ridge regression models to predict omission
scores for tokens using the word identity as predictor or adding depen-
dency relation (+dep), sentence position variables or both and their
interactions. We find that the word-identity is much less predictive
of omission score for TEXTUAL than it is for VISUAL and that
position is most informative for TEXTUAL, while for VISUAL de-
pendency relation and position variables provide similar increases in
R2.

In a more fine-grained analysis we examined the omission distri-
butions computed for the VISUAL pathway of words for which the
increase in R2 from the word-identity regression model to the +dep
model is the highest. We find a general pattern that words generally
produce the highest omission scores when they fill the noun subject
or root function in a sentence and smallest when they appear as con-
juncts.

Lastly we turn to contrasting what the individual dimensions of
the two pathways encode. To do so we compute the mutual infor-
mation between the binned activation values and different type of
contexts. For these contexts we consider word and dependency rela-
tion n-grams up to order three. This results in distributions of mutual
information values between activations and contexts. We take the me-
dian of these distributions to compare the types of contexts that are
more related to the activation patters in VISUAL than TEXTUAL.
We find a significant difference between the pathways: the features
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encoded by TEXTUAL are more related to dependency labels while
that of VISUAL are more related to words.

We can also use these mutual information scores to find for each
dimension of the hidden states of the recurrent networks, which con-
texts they are most related to. Through visual inspection we find
these contexts for both VISUAL and TEXTUAL to be a combina-
tion of semantic/syntactic constructions. Consider for example two
of these top contexts for one of the hidden units of TEXTUAL: male
on a, person rides a. In general for VISUAL we find contexts to be
more topically than syntactically related.

Through the development and application of the omission score
and mutual information-based interpretation techniques we have found
similarities and differences between the representations learned by a
image–sentence ranking model and a language model.

Since our article was published there have been a large num-
ber of input token saliency measures introduced in the literature as
discussed in Section 2.7. Shrikumar et al. (2017) points out that
perturbation-based techniques like our omission score tend to strug-
gle due to the limited perturbation window i.e.: the important con-
text might be larger than the scope of the perturbation function. On
the explanation evaluation benchmark experiments of Poerner et al.
(2018b) perturbation based methods (including ours) lead to incon-
sistent results and backpropagation style methods (Bach et al., 2015;
Shrikumar et al., 2017) have a stronger performance in general.

To find typical inputs to hidden units Poerner et al. (2018a) de-
velop an alternative to our mutual-information-based approach and
apply it to our IMAGINET architecture. They perform gradient
ascent on maximizing the activation values for particular dimensions.
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Even though their technique is quite different, their results reproduce
our findings that the hidden units of TEXTUAL tend to be more
syntax-aware than that of VISUAL.

Interpretation of deep models of language has become a subfield
of NLP in its own right with dedicated venues such as the first Black-
boxNLP Workshop at EMNLP 2018 (Alishahi et al., 2019). Future
work in the field of linguistic representation learning can benefit from
these analysis methods by shedding more light onto the differences
between learning from different cues such as the linguistic versus per-
ceptual contexts we considered in this thesis.

8.3 Improving translation with visual ground-
ing

Multi-modal machine translation has been introduced as a shared
task in the First Conference of Machine Translation (WMT16) (Spe-
cia et al., 2016a) initially with German and English data (Elliott
et al., 2016) and later with added French and Czech data (Elliott
et al., 2017). The task is machine translation with added side infor-
mation in the form of images i.e. the generation of the target sen-
tence is conditioned both on the source and the corresponding image.
Through a review of the state-of-the-art we observe in Chapter 5 that
the multi-modal and text-only versions of the top performing systems
during the first competition have very similar performances (Specia
et al., 2016a). Furthermore, when multi-modal systems do perform
better it is unclear whether they successfully use images as context to
aid translation or they benefit from learning better representations
though visual grounding.
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In Chapter 5 rather than conditioning translation on the addi-
tional image context we introduce an architecture to learn visually
grounded representations jointly with translation. More precisely we
train a shared encoder which provides input representation to an
image–sentence ranking and an attentional translation decoder. The
two sub-models are trained jointly with multi-task learning, much
like IMAGINET in Chrupała et al. (2015).

We considered two setups: 1.) aligned setting where the input is
made up of triplets of an English sentence, its German translation
and a corresponding image, 2.) disjoint where we have a separate
English-German parallel corpus and an image–sentence corpus in En-
glish. We find that the multi-task model significantly outperforms
the text-only baseline with no significant difference in performance
between the aligned and disjoint settings. This result provides evi-
dence that visual grounding can provide a useful inductive bias to
improve translation quality. We also performed a follow up exper-
iment where we set a stronger baseline by improving our text-only
model performance with training on an additional English-German
parallel corpus. We observed that even when extra translation data
was available visual grounding still provided improvements in perfor-
mance. Finally, our full system with the extra parallel corpus and an
additional image–sentence data set achieved 2nd place according the
human judgments in the WMT Shared Task on Multimodal Transla-
tion and Multilingual Image Description (Elliott et al., 2017) on the
unconstrained task out of 16 submissions.

On this Shared Task for some systems the multi-modal variant
achieved better performance (Caglayan et al., 2017), while the text-
only was better for others (Ma et al., 2017). The results of the third
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shared task are in line with that of the previous years: adding im-
ages as extra context to translation systems resulted in marginal
differences in translation quality (Barrault et al., 2018).

Elliott (2018) investigates the issue further and introduces a mea-
sure of the image awareness of multi-modal translation models and
conclude that the current version of the Multi30K data set proba-
bly does not contain many training samples where the models need
to take the visual modality into account for translation. The role
of visual context in translation remains an active area of research
at the time of writing this thesis: the ”Best Short Paper” title at
the North American Chapter of Association for Computational Lin-
guistics 2019 was awarded to Caglayan et al. (2019) who show that
multi-modal systems are insensitive to images in general, however,
the visual contexts can help models recover from corruptions to the
source sentences.

8.4 Multilingual visually grounded sen-
tence representations

We show in Chapter 5 that visually grounded sentence representation
learning can provide a useful inductive bias for machine translation.
Kiros et al. (2018) also report improved translation performance on
the English–German and English–French Multi30K and IWSLT 2014
German-English (Cettolo et al., 2014) translation tasks, when initial-
izing the translation models with their visually grounded Picturebook
word-embeddings.

They also show that combining pre-trained GloVe (Pennington
et al., 2014) and Picturebook embeddings leads to improvements on
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natural language inference on the SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) data sets and on predicting seman-
tic relatedness on the SICK data set (Marelli et al., 2014a). Kiela
et al. (2018) through transfer experiments on entailment and sen-
tence classification tasks find that the representations learned by an
image–sentence ranking model trained on COCO – similar to the ones
trained in Chapters 5, 6, 7 – outperform that of their SkipThought
(Kiros et al., 2015) re-implementation. They conclude that visual
grounding leads to qualitatively different representations, which can
be beneficial to many tasks.

Given the promising results on the benefit of visual grounding on
sentence level tasks it seems to be an important avenue to explore
techniques to learn better quality and more general multi-modal rep-
resentations. To this end in Chapters 6 and 7 we turned to learning
grounded representations for multipe languages jointly. The bene-
fit of multilingual joint learning has been demonstrated for example
in dependency parsing (Ammar et al., 2016), machine translation
(Johnson et al., 2017) and grapheme-to-phoneme conversion (Peters
et al., 2017). In the visually grounded representation learning Gella
et al. (2017) showed improved performance in some cases for image–
sentence ranking and semantic textual similarity when training on
two languages jointly.

In Chapter 6 we improve and expand the results of Gella et al.
(2017). Firstly, contrary to their results we report consistent perfor-
mance gains in the bilingual setting in our setup: bilingual joint train-
ing improves for both English and German image–sentence ranking
experiments and the cross–lingual caption–caption ranking objective
provides further benefits in both cases. Furthermore, we show that
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the performance of the bilingual model can be improved by training
with two additional languages: French and Czech. We further show
that the image–sentence ranking results on the lower resource French
and Czech data sets can be improved by jointly training with the
larger English and German data sets. Our experiments suggest the
clear benefits of multilingual visually grounded representations over
their mono- and bilingual counterparts.

These results are all based on a setting where the same images
are annotated with captions in different languages. To test whether
this alignment is crucial, we generate a synthetic disjoint set using
the data set that we used for the alignment experiments. We find
that the models perform equally well in both setups.

Chapter 7 is dedicated to explore the disjoint setting under more
realistic circumstances, where we have two data sets that were col-
lected separately. Specifically we use the English-German Multi30K
and the English COCO for our experiments. Training on COCO re-
sulted in a low test performance on the English Multi30K leading us
to conclude that though the two data sets appear fairly similar there
is a considerable shift in domains. When training the disjoint model
on the German Multi30K and English COCO we find that the test
performance is lower on the German Multi30K test set compared
to training the aligned model i.e.: training on the English-German
Multi30K. This difference might be partially due to domain-shift.
Alternatively, the lack of alignment makes it challenging to find cor-
respondences between languages that is crucial to exploit complemen-
tary information between them.

The motivation for our pseudopairs method in Chapter 7 was
to improve the models’ capacity to learn from disjoint data sets by
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creating a synthetic alignment. In the fully disjoint experiment our
method starts by training a bilingual model on the German Multi30K
and the English COCO. Then we use the sentence similarities under
this parent model to generate a synthetic English-German COCO: For
each English sentence in COCO we find the most similar sentence in
Multi30k and use it as the German description for that image. We
add an extra experiment we call aligned plus disjoint setting where
both the bilingual Multi30k and the additional larger English COCO
is available. In both cases we find improvements when we use the
pseudopair method.

We demonstrated in Chapter 6 that using our setup we can learn
better visually grounded representations when training on multiple
languages. Our results suggest that the more languages are used for
training the larger the gain, however, we only considered the same
images annotated with four languages. Future work can shed more
light on under what circumstances this observation holds by running
experiments with different resources such as the Chinese Flickr8k (Li
et al., 2016c) or the Japanese COCO (Miyazaki & Shimizu, 2016).

Even though the pseudopair method presented in Chapter 7 pro-
vides consistent improvements we find that using an off-the-shelf
model to translate the captions to the desired language to create syn-
thetic pairs leads to larger improvements. In future work we will focus
on narrowing this gap by applying better matching algorithms to gen-
erate pseudopairs that mitigate the hubness problem (Radovanović
et al., 2010; Tomašev et al., 2011a,b; Dinu et al., 2015).
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8.5 Future directions and limitations

8.5.1 Embedding geometry
The visually grounded sentence representation learning approaches
we presented in this thesis learn to represent sentences as points in
an embedding space through minimizing symmetric distance func-
tions. An alternative we have not explored is the asymmetric order-
embeddings (Vendrov et al., 2016) which was shown to outperform
cosine-similarity-based image–sentence ranking models (Faghri et al.,
2018). Richer semantic representations could be also explored in
the future such as Gaussian distributions over a latent embedding
space (Vilnis & McCallum, 2015), which allow for the modeling of
asymmetric relationship between sentences such as entailment, speci-
ficity/inclusion and uncertainty. Another lesser known approach in
the literature is to embed objects in a hyperbolic space (Nickel &
Kiela, 2017), which naturally represents hierarchical relationships and
can be thought of as a continuous version of trees (Krioukov et al.,
2010). In a similar setup to ours Tay et al. (2018) trains a simple
hyperbolic sentence embedding architecture for question-answer rank-
ing using a pairwise ranking loss without any attention/interaction
layer, which performs at state-of-the-art level. Future work in visually
grounded and multilingual representation learning can benefit from
exploring spaces of various topology for the embedding of sentences.

8.5.2 Multi-task learning
Progress towards learning better visually grounded and multilingual
representations can be accelerated by exploring different multi-task
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learning strategies. In chapters 4, 5, 6 and 7 we used hard parameter
sharing (Caruana, 1997; Collobert et al., 2011) and share the whole
encoder across all languages. This strategy is expected to work when
there is a close relationship between tasks (Baxter, 2000) – or lan-
guages in our case – and worse results are expected as the distance
between tasks grow (Maurer, 2006). The other most common ap-
proach to parameter sharing in neural networks is soft parameter
sharing: each task has its own set of parameters, but a regularization
penalty is added forcing these parameter sets to be similar (Duong
et al., 2015; Yang & Hospedales, 2016).

Furthermore, in chapters 6 and 7 we follow the common practice
of pre-defining uniform task sampling probabilities before training
time and keep them fixed during training (Alonso & Plank, 2017;
Bingel & Søgaard, 2017). However, Kiperwasser & Ballesteros (2018)
observe benefits from applying fixed schedules to the task sampling
probabilities, while Sanh et al. (2018) show the benefits of adjusting
the sampling probabilities to the size of the training sets of different
tasks. Recently Ruder et al. (2017) presented a method to jointly
learn the task-weighting or sampling probabilities and which param-
eters to share.

8.5.3 Local image descriptors
The approaches presented in the thesis extracted global image and
sentence features through separate encoders and learned to associate
them. Another line of work focuses on learning latent alignments
between sentence fragments – usually words – and image regions. The
architecture presented in (Karpathy & Fei-Fei, 2015) first encodes the
sentence with a bidirectional recurrent network and extracts image
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region features from a pre-trained convolutional neural network. The
dot product between the hidden states of the recurrent network and
local region features are interpreted as the similarity between regions
and words. This formulation offered a blue-print for later models that
define various more sophisticated attention mechanisms to compute
region–word interactions in a multi-step fashion (Nam et al., 2017;
Huang et al., 2017).

8.6 Conclusion
Chapters 3 and 4 focused on models that learn word and sentence
embeddings, using the visual world as a naturally occuring meaning
representation for linguistic utterrances. In these chapters we devel-
oped and contrasted such visually grounded linguistic representation
learning models with traditional distributional approaches.

In Chapter 3 we developed a novel model of cross-situational word
learning and demonstrated that, while on human similarity bench-
marks our model and a state-of-the-art distributional model perform
on par, the distributional model captures the semantics of abstract
and our visually grounded model captures that of the concrete words
more accurately. We also showed that our model tags images with
relevant concepts.

Chapter 4 focused on visually grounded representations on the
sentence level. We developed novel techniques to analyze and under-
stand the representations learned by recurrent neural network models
of language and used these methods to compare a language model and
an image–sentence ranking model. We have found that the represen-
tations learned by the visually grounded model are mostly impacted
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by semantically contentful words, while for the language model this
saliency score over word categories is more uniform. Furthermore,
we have both quantitatively and qualitatively identified differences
between the features encoded by the hidden dimensions of grounded
and distributional models. We presented evidence that the dimen-
sions of the latter are more associated with syntactic patterns, while
that of the former seems to be more lexicalized and focused on topi-
cally related word sequences.

Chapters 5, 6 and 7 took the concept of visual grounding a step
further and utilized images to bridge between multiple languages. We
applied visual grounding to improve machine translation and studied
multilingual visually grounded sentence representations.

Chapter 5 introduced our first multilingual experiment and showed
that visually grounded sentence representation learning can improve
machine translation and results in orthogonal improvements to hav-
ing access to additional parallel corpora.

Chapters 6 and 7 focused on learning better quality and more gen-
eral visually grounded sentence representations by learning to repre-
sent multiple languages jointly.

Chapter 6 presents several results on the benefits of multilingual
joint learning on image–sentence ranking. We showed that multilin-
gual representations consistently outperform bilingual and monolin-
gual grounded sentence representations in image–sentence ranking ex-
periments. Furthermore, we provided evidence that the performance
on lower-resource languages can be improved by training jointly with
higher-resource languages. In all these cases the caption–caption ob-
jective provided consistent improvements.

A limitation, however, of most of our experiments in Chapter 6 is
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that they are based on a specific data configuration, where the same
images are annotated with multiple languages.

Chapter 7 explores the issue of alignment in a more realistic sce-
nario, where seperate image–sentence corpora are available for differ-
ent languages. We have found that the aligned setting offers more
performance benefits compared to the disjoint setting. To help close
the gap between the aligned and disjoint conditions we develop a
technique we call pseudopairs to generate a synthetic aligned data set
given two disjoint sets, without requiring any extra data or pipeline
elements. We find that our technique improves performance, how-
ever, lags behind using an automatic machine translation system to
create a synthetic aligned set in the desired language.

To improve performance and understanding in visually grounded
and multilingual representation learning we see several avenues for
future research. One of our main interest for future work is to pin-
point some of the mechanisms that lead to improvements when learn-
ing multilingual as opposed to monolingual grounded representations.
For better results we consider replacing our naive multi-task learning
and parameter sharing algorithms with more principled approaches.
Similarly, in future work we will focus on improving our pseudopair
generation algorithm, replacing our initial implementation with more
sophisticated matching algorithms optimizing not only for the quality,
but also diversity of the resulting synthetic sets. A further natural
extension to the work presented here is taking advantage of image–
sentence data sets in all available languages, rather than just focusing
on the ones we considered in the thesis. Our results in Chapter 6
suggest that training on more languages lead to improved results,
however, it is unclear how general our findings are due to the limited
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number of languages we considered. Finally, exploring embedding
spaces with different topologies – such as hyperbolic geometry – we
think is an exciting future avenue for visually grounded and multilin-
gual representations learning.
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